Risk-taking incentives predict aggression heuristics in female gorillas
Curation statements for this article:-
Curated by eLife
eLife Assessment
This important study uses long-term behavioural observations to understand the factors that influence female-on-female aggression in gorilla social groups. The evidence supporting the claims is convincing, as it includes novel methods of assessing aggression and considers other potential factors. The work will be of interest to broad biologists working on the social interactions of animals.
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (eLife)
Abstract
Competition is commonly reflected in aggressive interactions among groupmates as individuals try to attain or maintain higher social ranks that can offer them better access to critical resources. In this study, we investigate the factors that can shift competitive incentives against higher- or lower-ranking groupmates, that is, more or less powerful individuals. We use a long-term behavioural data set on five wild groups of the two gorilla species starting in 1998, and we show that most aggression is directed from higher- to lower-ranking adult females close in rank, highlighting rank-reinforcement incentives. Yet, females directed 42% of aggression to higher-ranking females than themselves. Females targeted groupmates of higher rank with increasing number of males in the group, suggesting that males might buffer female–female aggression risk. Contrarily, they targeted females of lower rank with increasing number of females in the group, potentially because this is a low-risk option that females prefer when they have access to a larger pool of competitors to choose from. Lactating and pregnant females, especially those in the latest stage of pregnancy, targeted groupmates of higher rank than the groupmates that cycling females targeted, suggesting that energetic needs may motivate females to risk confrontation with more powerful rivals. Our study provides critical insights into the evolution of competitive behaviour, showing that aggression heuristics, the simple rules that animals use to guide their aggressive interactions, are not merely species-specific but also dependent on the conditions that populations and individuals experience.
Article activity feed
-
-
-
-
eLife Assessment
This important study uses long-term behavioural observations to understand the factors that influence female-on-female aggression in gorilla social groups. The evidence supporting the claims is convincing, as it includes novel methods of assessing aggression and considers other potential factors. The work will be of interest to broad biologists working on the social interactions of animals.
-
Joint Public Review:
Summary:
This work aims to improve our understanding of the factors that influence female-on-female aggressive interactions in gorilla social hierarchies, using 25 years of behavioural data from five wild groups of two gorilla species. Researchers analysed aggressive interactions between 31 adult females, using behavioural observations and dominance hierarchies inferred through Elo-rating methods. Aggression intensity (mild, moderate, severe) and direction (measured as the rank difference between aggressor and recipient) were used as key variables. A linear mixed-effects model was applied to evaluate how aggression direction varied with reproductive state (cycling, trimester-specific pregnancy, or lactation) and sex composition of the group. This study highlights the direction of aggressive interactions between …
Joint Public Review:
Summary:
This work aims to improve our understanding of the factors that influence female-on-female aggressive interactions in gorilla social hierarchies, using 25 years of behavioural data from five wild groups of two gorilla species. Researchers analysed aggressive interactions between 31 adult females, using behavioural observations and dominance hierarchies inferred through Elo-rating methods. Aggression intensity (mild, moderate, severe) and direction (measured as the rank difference between aggressor and recipient) were used as key variables. A linear mixed-effects model was applied to evaluate how aggression direction varied with reproductive state (cycling, trimester-specific pregnancy, or lactation) and sex composition of the group. This study highlights the direction of aggressive interactions between females, with most interactions being directed from higher- to lower-ranking adult females close in social rank. However, the results show that 42% of these interactions are directed from lower- to higher-ranking females. Particularly, lactating and pregnant females targeted higher-ranking individuals, which the authors suggest might be due to higher energetic needs, which increase risk-taking in lactating and pregnant females. Sex composition within the group also influenced which individuals were targeted. The authors suggest that male presence buffers female-on-female aggression, allowing females to target higher-ranking females than themselves. In contrast, females targeted lower-ranking females than themselves in groups with a larger ratio of females, which supposes a lower risk for the females since the pool of competitors is larger. The findings provide an important insight into aggression heuristics in primate social systems and the social and individual factors that influence these interactions, providing a deeper understanding of the evolutionary pressures that shape risk-taking, dominance maintenance, and the flexibility of social strategies in group-living species.
The authors achieved their aim by demonstrating that aggression direction in female gorillas is influenced by factors such as reproductive condition and social context, and their results support the broader claim that aggression heuristics are flexible. However, some specific interpretations require further support. Despite this, the study makes a valuable contribution to the field of behavioural ecology by reframing how we think about intra-sexual competition and social rank maintenance in primates.
Strengths:
One of the study's major strengths is the use of an extensive dataset that compiles 25 years of behavioural data and 6871 aggressive interactions between 31 adult females in five social groups, which allows for a robust statistical analysis. This study uses a novel approach to the study of aggression in social groups by including factors such as the direction and intensity of aggressive interactions, which offers a comprehensive understanding of these complex social dynamics. In addition, this study incorporates ecological and physiological factors such as the reproductive state of the females and the sex composition of the group, which allows an integrative perspective on aggression within the broader context of body condition and social environment. The authors successfully integrate their results into broader evolutionary and ecological frameworks, enriching discussions around social hierarchies and risk sensitivity in primates and other animals.
-
Author response:
The following is the authors’ response to the original reviews.
Reviewer #1 (Recommendations for the authors):
Suggestions:
Although this study has an impressive dataset, I felt that some parts of the discussion would benefit from further explanation, specifically when discussing the differences in female aggression direction between groups with different sex compositions. In the discussion is suggested that males buffer female-on-female aggression and that they 'support' lower-ranking females (see line 212), however, the study only tested the sex composition of the group and does not provide any evidence of this buffering. Thus, I would suggest adding more information on how this buffering or protection from males might manifest (for example, listing male behaviours that might showcase this protection) or referencing …
Author response:
The following is the authors’ response to the original reviews.
Reviewer #1 (Recommendations for the authors):
Suggestions:
Although this study has an impressive dataset, I felt that some parts of the discussion would benefit from further explanation, specifically when discussing the differences in female aggression direction between groups with different sex compositions. In the discussion is suggested that males buffer female-on-female aggression and that they 'support' lower-ranking females (see line 212), however, the study only tested the sex composition of the group and does not provide any evidence of this buffering. Thus, I would suggest adding more information on how this buffering or protection from males might manifest (for example, listing male behaviours that might showcase this protection) or referencing other studies that support this claim. Another example of this can be found in lines 223-224, which suggests that females choose lower-ranking individuals when they are presented with a larger pool of competitors; however, in lines 227-228, it's stated that this result contradicts previous work in baboons, which makes the previous claim seem unjustified. I recommend adding other examples from studies that support the results of this paper and adding a line that addresses reasons why these differences between gorillas and baboons might be caused (for example, different social dynamics or ecological constraints). In addition, I suggest the inclusion of physiological data such as direct measures of energy expenditure, caloric intake, or hormone levels, as it would strengthen the claims made in the second paragraph of the discussion. However, I understand this might not be possible due to data or time constraints, so I suggest adding more robust justification on why lactation and pregnancy were used as a proxy for energetic need. In the methods (lines 127-128), it is unclear which phase of the pregnancy or lactation is more energetically demanding. I would also suggest adding a comment on the limitations of using reproductive state to infer energetic need. Lastly, if the data is available, I believe it would be interesting to add body size and age of the females or the size difference between aggressor and target as explanatory variables in the models to test if physiological characteristics influence female-on-female aggression.
Male support:
We have now added more references (Watts 1994, 1997) and enriched our arguments regarding male presence buffering aggression. Previous research suggests that male gorillas may support lower-ranking females and they may intervene in female-female conflicts (Sicotte 2002). Unfortunately, our dataset did not allow us to test for male protection. We conduct proximity scans every 10 minutes and these scans are not associated to each interaction, meaning that we cannot reliably test if proximity to a male influences the likelyhood to receive aggression.
Number of competitors and choice of weaker competitors:
We added a very relevant reference in humans, showing that people choose weaker competitors when they have they can choose. We removed the example to baboons because it used sex ratio and the relevance to our study was not that straightforward.
Reproductive state as a proxy for energetic needs:
We now mention clearly that reproductive state is an indirect measure of energetic needs.
We rephrased our methods to: “Lactation is often considered more energetically demanding than pregnancy as a whole but the latest stages of pregnancy are highly energetically demanding, potentially even more than lactation”
Unfortunately, we do not have access to physiological and body size data. Regarding female age, for many females, ages are estimates with errors up to a decade, and thus, we choose not to use them as a reliable predictor. Having accurate values for all these variables, would indeed be very valuable and improve the predicting power of our study.
Recommendations for writing and presentation:
Overall, the manuscript is well-organised and well-written, but there are certain areas that could improve in clarity. In the introduction, I believe that the term 'aggression heuristic' should be introduced earlier and properly defined in order to accommodate a broader audience. The main question and aims of the study are not stated clearly in the last paragraph of the introduction. In the methods, I think it would improve the clarity to add a table for the classification of each type of agonistic interactions instead of naming them in the text. For example, a table that showcase the three intensity categories (severe, mild and moderate), than then dives into each behaviour (e.g. hit, bite, attack, etc.) and a short description of these behaviours, I think this would be helpful since some of the behaviours mentioned can be confusing (what's the difference between attack, hit and fight?). In addition, in line 104, it states that all interactions were assigned equal intensity, which needs to be explained.
We now define aggression heuristics in both the abstract and the first paragraph of the introduction. We have also explained aggressive interactions that their nature was not obvious from their names. Hopefully, these explanations make clear the differences among the recorded behaviours.
We have now specified that the “equal intensity” refers to avoidances and displacements used to infer power relationships: “We assigned to all avoidance/displacement interactions equal intensity, that is, equal influence to the power relationship of the interacting individuals”
Minor corrections:
(1) In line 41, there is a 1 after 'similar'. I am unsure if it's a mistake or a reference.
We corrected the typo.
(2) In lines 68-69, there is mention of other studies, but no references are provided.
We added citations as suggested.
(3) Remove the reference to Figure 1 (line 82) from the introduction; the figure should be referenced in the text just before the image, however, your figure is in a different section.
We removed the reference as suggested.
(4) Line 98 and 136, it's written 'ad libtum' but the correct spelling is 'ad libitum'.
We corrected the typo.
(5) Figure 3, remove the underscores between the words in the axis titles.
We removed the underscores.
Reviewer #2 (Recommendations for the authors):
Here, I have outlined some specific suggestions that require attention. Addressing these comments will enhance the readability and enhance the quality of the manuscript.
(1) L69. Add citation here, indicating the studies focusing on aggression rates.
We added citations as suggested.
(2) L88. The study periods used in this study and the authors' previous study (Reference 11) are different. So please add one table as Table 1 showing the details info on the sampling efforts and data included in their analysis of this study. For example, the study period, the numbers of females and males, sampling hours, the number of avoidance/displacement behaviors used to calculate individual Elo-ratings, and the number of mild/moderate/severe aggressive interactions, etc.
We have now added another table, as suggested (new Table 1) and we have also made clear that we used the hierarchies presented in detail in (Smit & Robbins 2025).
(3) L103. If readers do not look over Reference 25 on purpose, they do not know what the authors want to talk about and why they mention the optimized Elo-rating method. Clarify this statement and add more content explaining the differences between the two methods, or just remove it.
We rephrased the text and in response to the previous comment, we clearly state that there are more details about our approach in Smit & Robbins 2025. At the end of the relevant sentence, we added the following parenthesis “(see “traditional Elo rating method”; we do not use the “optimized Elorating method” as it yields similar results and it is not widely used)” and we removed the sentence referring to the optimized Elo-rating method.
(4) L110. Here, the authors stated that the individual with the standardized Elo-score 1 was the highest-ranking. L117, the "aggression direction" score of each aggressive interaction was the standardized Elo-score of the aggressor, subtracting that of the recipient. So, when the "aggression direction" score was 1, it should mean that the aggressor was the highest-ranking and the recipient was the lowest-ranking female. This is not as the authors stated in L117-120 (where the description was incorrectly reversed). Please clarify.
The highest ranking individual has indeed Elo_score equal to 1 and we calculated the interaction score (or "aggression direction score") of each aggressive interaction by subtracting the standardized Elo-score of the aggressor from that of the recipient (Elo_recepient – Elo_aggressor). So, when the aggressor is the lowest-ranking female (Elo_score=0) and the recipient the highestranking female one (Elo_score=1), the "aggression direction score" is 1-0 = 1.
(5) Regarding point 3 of the Public Review, please also revise/expand the paragraph L193-208 in the Discussion section accordingly.
Please see our response to the public review. We have enriched the results section, added pairwise comparisons in a new table (Table 2) and modified the discussion accordingly.
(6) Table 1. It's not clear why authors added the column 'Aggression Rate' but did not provide any explanation in the Methods/Results section. How did they calculate the correlation between each tested variable and the "overall adult female aggression rates"? Correlating the number of females in the first trimester of female pregnancy with the female aggression rates in each study group? What did the correlation coefficients mean? L202-204 may provide some hints as to why the authors introduced the Aggression Rate. But it should be made clear in the previous text.
We now added more details in the legend of the table to make our point clear: “To highlight that aggression rates can increase due to increase in interactions of different score, we also include the effect of some of the tested variables on overall adult female aggression rates, based on results of linear mixed effects models from (Smit & Robbins 2024).” We did not include detailed methods to calculate those results because they are detailed in (Smit & Robbins 2024). We find it valuable to show the results of both aggression rates and aggression directionality according to the same predictor variables as a means to clarify that aggression rates and aggression directionality are not always coordinated to one another (they do not always change in a consistent manner relative to one another).
(7) L166.This is not rigorous. Please rephrase. There is only one western gorilla group containing only one resident male included in the analysis.
We have toned down our text: “Our results did not show any significant difference between femalefemale aggression patterns within the one western and four mountain gorillas groups”
(8) L167. I don't think the interaction scores in the third trimester of female pregnancy were significantly higher than those in the first trimester. The same concern applies in L194-195.
We have now added a new table with post hoc pairwise comparisons among the different reproductive states that clarifies that.
(9) L202. There is no column 'Aggression rates' in Table 1 of Reference 11.
We have rephrased to make clear that we refer to Table 1 of the present study.
(10) L204-205. Reference 49. Maybe not a proper citation here. This claim requires stronger evidence or further justification. Additionally, please rephrase and clarify the arguments in L204208 for better readability and precision.
We have added three more references and rephrased to clarify our argument.
Reviewer #3 (Recommendations for the authors):
(1) Line 41: The word "similar" is misspelled.
We corrected the typo.
-
-
eLife Assessment
This important study uses long-term behavioural observations to understand the factors that influence female-on-female aggression in gorilla social groups. The evidence supporting the claims is convincing, as it includes novel methods of assessing aggression and considers other potential factors. The work will be of interest to broad biologists working on the social interactions of animals.
-
Reviewer #1 (Public review):
Summary:
This work aims to improve our understanding of the factors that influence female-on-female aggressive interactions in gorilla social hierarchies, using 25 years of behavioural data from five wild groups of two gorilla species. Researchers analysed aggressive interactions between 31 adult females, using behavioural observations and dominance hierarchies inferred through Elo-rating methods. Aggression intensity (mild, moderate, severe) and direction (measured as the rank difference between aggressor and recipient) were used as key variables. A linear mixed-effects model was applied to evaluate how aggression direction varied with reproductive state (cycling, trimester-specific pregnancy, or lactation) and sex composition of the group. This study highlights the direction of aggressive interactions …
Reviewer #1 (Public review):
Summary:
This work aims to improve our understanding of the factors that influence female-on-female aggressive interactions in gorilla social hierarchies, using 25 years of behavioural data from five wild groups of two gorilla species. Researchers analysed aggressive interactions between 31 adult females, using behavioural observations and dominance hierarchies inferred through Elo-rating methods. Aggression intensity (mild, moderate, severe) and direction (measured as the rank difference between aggressor and recipient) were used as key variables. A linear mixed-effects model was applied to evaluate how aggression direction varied with reproductive state (cycling, trimester-specific pregnancy, or lactation) and sex composition of the group. This study highlights the direction of aggressive interactions between females, with most interactions being directed from higher- to lower-ranking adult females close in social rank. However, the results show that 42% of these interactions are directed from lower- to higher-ranking females. Particularly, lactating and pregnant females targeted higher-ranking individuals, which the authors suggest might be due to higher energetic needs, which increase risk-taking in lactating and pregnant females. Sex composition within the group also influenced which individuals were targeted. The authors suggest that male presence buffers female-on-female aggression, allowing females to target higher-ranking females than themselves. In contrast, females targeted lower-ranking females than themselves in groups with a larger ratio of females, which supposes a lower risk for the females since the pool of competitors is larger. The findings provide an important insight into aggression heuristics in primate social systems and the social and individual factors that influence these interactions, providing a deeper understanding of the evolutionary pressures that shape risk-taking, dominance maintenance, and the flexibility of social strategies in group-living species.
The authors achieved their aim by demonstrating that aggression direction in female gorillas is influenced by factors such as reproductive condition and social context, and their results support the broader claim that aggression heuristics are flexible. However, some specific interpretations require further support. Despite this, the study makes a valuable contribution to the field of behavioural ecology by reframing how we think about intra-sexual competition and social rank maintenance in primates.
Strengths:
One of the study's major strengths is the use of an extensive dataset that compiles 25 years of behavioural data and 6871 aggressive interactions between 31 adult females in five social groups, which allows for a robust statistical analysis. This study uses a novel approach to the study of aggression in social groups by including factors such as the direction and intensity of aggressive interactions, which offers a comprehensive understanding of these complex social dynamics. In addition, this study incorporates ecological and physiological factors such as the reproductive state of the females and the sex composition of the group, which allows an integrative perspective on aggression within the broader context of body condition and social environment. The authors successfully integrate their results into broader evolutionary and ecological frameworks, enriching discussions around social hierarchies and risk sensitivity in primates and other animals.
Weaknesses:
Although the paper has a novel approach by studying the effect of reproductive state and social environment on female-female aggression, the use of observational data without experimental manipulation limits the ability to establish causation. The authors suggest that the difference observed in female aggression direction between groups with different sex composition might be indicative of male presence buffering aggression, which seems speculative, as no direct evidence of male intervention or support was reported. Similarly, the use of reproductive state as a proxy for energetic need is an indirect measure and does not account for actual energy expenditure or caloric intake, which weakens the authors' claims that female energetic need induces risk-taking. Overall, this paper would benefit from stronger justification and empirical support to strengthen the conclusions of the study about the mechanisms driving female aggression in gorillas.
-
Reviewer #2 (Public review):
Summary:
The authors' aim in this study is to assess the factors that can shift competitive incentives against higher- or lower-ranking groupmates in two gorilla species.
Strengths:
This is a relevant topic, where important insights could be gained. The authors brought together a substantial dataset: a long-term behavioral dataset representing two gorilla species from five social groups.
Weaknesses:
The authors have not fully shown the data used in the model and explored the potential of the model. Therefore, I remain cautious about the current results and conclusions.
Some specific suggestions that require attention are
(1) The authors described how group size can affect aggression patterns in some species (line 54), using a whole paragraph, but did not include it as an explanation variable in their model, …
Reviewer #2 (Public review):
Summary:
The authors' aim in this study is to assess the factors that can shift competitive incentives against higher- or lower-ranking groupmates in two gorilla species.
Strengths:
This is a relevant topic, where important insights could be gained. The authors brought together a substantial dataset: a long-term behavioral dataset representing two gorilla species from five social groups.
Weaknesses:
The authors have not fully shown the data used in the model and explored the potential of the model. Therefore, I remain cautious about the current results and conclusions.
Some specific suggestions that require attention are
(1) The authors described how group size can affect aggression patterns in some species (line 54), using a whole paragraph, but did not include it as an explanation variable in their model, despite that they stated the overall group size can "conflate opposing effects of females and males" (line 85). I suggest underlining the effects of numbers of males or/and females here and de-emphasizing the effect of group size in the Introduction.
(2) There should be more details given about how the authors calculated individual Elo-ratings (line 98). It seems that authors pooled all avoidance/displacement behaviors throughout the study period. But how often was the Elo-rating they included in the model calculated? By the day or by the month? I guess it was by the day, as they "estimate female reproductive state daily" (line 123). If so, it should be made clear in the text.
In addition, all groups were long-term studied, and the group composition seems fluctuant based on the Table 1 in Reference 11. When an individual enters/leaves the group with a stable hierarchy, it takes time before the hierarchy turns stable again. If the avoidance/displacement behaviors used for the rank relationship were not common, it would take a few days or maybe longer. Also, were the aggressive behaviors more common during rank fluctuations? In other words, if avoidance/displacement behaviors and aggressive behaviors occur simultaneously during rank fluctuations, how did the authors deal with it and take it into consideration in the analysis?
The authors emphasized several times in the text that gorillas "form highly stable hierarchical relationships". Also, in Reference 25, they found very high stabilities of each group's hierarchy. However, the number of females involved in that analysis was different from that used here. They need to provide more basic info on each group's dominance hierarchy and verify their statement. I strongly suggest that the authors display Elo-rating trajectories and necessary relevant statistics for each group throughout the study period as part of the supplementary materials.
(3) The authors stated why they differentiated the different stages based on female reproductive status. They also referred to the differences in energetic needs between stages of pregnancy and lactation (lines 127-128). However, in the mixed model, they only compared the interaction score between the female cycling stage and other stages. The model was not well explained, and the results could be expanded. I suggest conducting more pairwise comparisons in the model and presenting the statistics in the text, if there are significant results. If all three pregnancy stages differed significantly from cycling and lactating stages but not from each other, they may be merged as one pregnancy stage. More in-depth analysis would help provide better answers to the research questions.
-
Reviewer #3 (Public review):
Smit and Robbins' manuscript investigates the dynamics of aggression among female groupmates across five gorilla groups. The authors utilize longitudinal data to examine how reproductive state, group size, presence of males, and resource availability influence patterns of aggression and overall dominance rankings as measured by Elo scores. The findings underscore the important role of group composition and reproductive status, particularly pregnancy, in shaping dominance relationships in wild gorillas. While the study addresses a compelling and understudied topic, I have several comments and suggestions that may enhance clarity and improve the reader's experience.
(1) Clarification of longitudinal data - The manuscript states that 25 years of behavioral data were used, but this number appears unclear. Based …
Reviewer #3 (Public review):
Smit and Robbins' manuscript investigates the dynamics of aggression among female groupmates across five gorilla groups. The authors utilize longitudinal data to examine how reproductive state, group size, presence of males, and resource availability influence patterns of aggression and overall dominance rankings as measured by Elo scores. The findings underscore the important role of group composition and reproductive status, particularly pregnancy, in shaping dominance relationships in wild gorillas. While the study addresses a compelling and understudied topic, I have several comments and suggestions that may enhance clarity and improve the reader's experience.
(1) Clarification of longitudinal data - The manuscript states that 25 years of behavioral data were used, but this number appears unclear. Based on my calculations, the maximum duration of behavioral observation for any one group appears to be 18 years. Specifically:
- ATA: 6 years
- BIT: 8 years
- KYA: 18 years
- MUK: 6 years
- ORU: 8 years I recommend that the authors clarify how the 25-year duration was derived.
(2) Consideration of group size - The authors mention that group size was excluded from analyses to avoid conflating the opposing effects of female and male group members. While this is understandable, it may still be beneficial to explore group size effects in supplementary analyses. I suggest reporting statistics related to group size and potentially including a supplementary figure. Additionally, given that the study includes both mountain and wild gorillas, it would be helpful to examine whether any interspecies differences are apparent.
(3) Behavioral measures clarification - Lines 112-116 describe the types of aggressive behaviors observed. It would be helpful to clarify how these behaviors differ from those used to calculate Elo scores, or whether they overlap. A brief explanation would improve transparency regarding the methodology.
(4) Aggression rates versus Elo scores - The manuscript uses aggression rates rather than dominance rank (as measured by Elo scores) as the main outcome variable, but there is no explanation on why. How would the results differ if aggression rates were replaced or supplemented with Elo scores? The current justification for prioritizing aggression rates over dominance rank needs to be more clearly supported.
-
Author response:
Public Reviews:
Reviewer #1 (Public review):
Summary:
This work aims to improve our understanding of the factors that influence female-on-female aggressive interactions in gorilla social hierarchies, using 25 years of behavioural data from five wild groups of two gorilla species. Researchers analysed aggressive interactions between 31 adult females, using behavioural observations and dominance hierarchies inferred through Elo-rating methods. Aggression intensity (mild, moderate, severe) and direction (measured as the rank difference between aggressor and recipient) were used as key variables. A linear mixed-effects model was applied to evaluate how aggression direction varied with reproductive state (cycling, trimester-specific pregnancy, or lactation) and sex composition of the group. This study highlights the …
Author response:
Public Reviews:
Reviewer #1 (Public review):
Summary:
This work aims to improve our understanding of the factors that influence female-on-female aggressive interactions in gorilla social hierarchies, using 25 years of behavioural data from five wild groups of two gorilla species. Researchers analysed aggressive interactions between 31 adult females, using behavioural observations and dominance hierarchies inferred through Elo-rating methods. Aggression intensity (mild, moderate, severe) and direction (measured as the rank difference between aggressor and recipient) were used as key variables. A linear mixed-effects model was applied to evaluate how aggression direction varied with reproductive state (cycling, trimester-specific pregnancy, or lactation) and sex composition of the group. This study highlights the direction of aggressive interactions between females, with most interactions being directed from higher- to lower-ranking adult females close in social rank. However, the results show that 42% of these interactions are directed from lower- to higher-ranking females. Particularly, lactating and pregnant females targeted higher-ranking individuals, which the authors suggest might be due to higher energetic needs, which increase risk-taking in lactating and pregnant females. Sex composition within the group also influenced which individuals were targeted. The authors suggest that male presence buffers female-on-female aggression, allowing females to target higher-ranking females than themselves. In contrast, females targeted lower-ranking females than themselves in groups with a larger ratio of females, which supposes a lower risk for the females since the pool of competitors is larger. The findings provide an important insight into aggression heuristics in primate social systems and the social and individual factors that influence these interactions, providing a deeper understanding of the evolutionary pressures that shape risk-taking, dominance maintenance, and the flexibility of social strategies in group-living species.
The authors achieved their aim by demonstrating that aggression direction in female gorillas is influenced by factors such as reproductive condition and social context, and their results support the broader claim that aggression heuristics are flexible. However, some specific interpretations require further support. Despite this, the study makes a valuable contribution to the field of behavioural ecology by reframing how we think about intra-sexual competition and social rank maintenance in primates.
Strengths:
One of the study's major strengths is the use of an extensive dataset that compiles 25 years of behavioural data and 6871 aggressive interactions between 31 adult females in five social groups, which allows for a robust statistical analysis. This study uses a novel approach to the study of aggression in social groups by including factors such as the direction and intensity of aggressive interactions, which offers a comprehensive understanding of these complex social dynamics. In addition, this study incorporates ecological and physiological factors such as the reproductive state of the females and the sex composition of the group, which allows an integrative perspective on aggression within the broader context of body condition and social environment. The authors successfully integrate their results into broader evolutionary and ecological frameworks, enriching discussions around social hierarchies and risk sensitivity in primates and other animals.
Thank you for the positive assessment of our work and the nice summary of the manuscript!
Weaknesses:
Although the paper has a novel approach by studying the effect of reproductive state and social environment on female-female aggression, the use of observational data without experimental manipulation limits the ability to establish causation. The authors suggest that the difference observed in female aggression direction between groups with different sex composition might be indicative of male presence buffering aggression, which seems speculative, as no direct evidence of male intervention or support was reported. Similarly, the use of reproductive state as a proxy for energetic need is an indirect measure and does not account for actual energy expenditure or caloric intake, which weakens the authors' claims that female energetic need induces risk-taking. Overall, this paper would benefit from stronger justification and empirical support to strengthen the conclusions of the study about the mechanisms driving female aggression in gorillas.
We agree that experimental manipulation would allow us to extend our work. Unfortunately, this is not possible with wild, endangered gorillas.
We have now added more references (Watts 1994; Watts 1997) and enriched our arguments regarding male presence buffering aggression. Previous research suggests that male gorillas may support lower-ranking females and they may intervene in female-female conflicts (Sicotte 2002). Unfortunately, our dataset did not allow us to test for male protection. We conduct proximity scans every 10 minutes and these scans are not associated to each interaction, meaning that we cannot reliably test if proximity to a male influence the likelihood to receive aggression.
We have now clearly stated that reproductive state is an indirect proxy for energetic needs. We agree with your point about energy intake and expenditure, but unfortunately, we do not have data on energy expenditure or caloric intake to allow us to delve into more fine-grained analyses.
Overall, we have tried to enrich the justification and empirical support to strengthen our conclusions by clarifying the text and adding more examples and references.
Reviewer #2 (Public review):
Summary:
The authors' aim in this study is to assess the factors that can shift competitive incentives against higher- or lower-ranking groupmates in two gorilla species.
Strengths:
This is a relevant topic, where important insights could be gained. The authors brought together a substantial dataset: a long-term behavioral dataset representing two gorilla species from five social groups.
Weaknesses:
The authors have not fully shown the data used in the model and explored the potential of the model. Therefore, I remain cautious about the current results and conclusions.
Some specific suggestions that require attention are
(1) The authors described how group size can affect aggression patterns in some species (line 54), using a whole paragraph, but did not include it as an explanation variable in their model, despite that they stated the overall group size can "conflate opposing effects of females and males" (line 85). I suggest underlining the effects of numbers of males or/and females here and de-emphasizing the effect of group size in the Introduction.
We did not use group size as a main predictor, as has been commonly done in other species, because of potentially conflating opposing effects of males and females. To further stress this point, we have specifically added in the introduction: “group size, the overall number of individuals in the group, might not be a good predictor of aggression heuristics, as it can conflate the effects of different kinds of individuals on aggression (see Smit & Robbins 2024 for an example of opposing effects of the number of females and number of males on female gorilla aggression).”
We also “ran our analysis testing for group size (number of weaned individuals in the group), instead of the numbers of females and males, [and] its influence on interaction score was not significant (estimate=-0.001, p-value=0.682).”
(2) There should be more details given about how the authors calculated individual Elo-ratings (line 98). It seems that authors pooled all avoidance/displacement behaviors throughout the study period. But how often was the Elo-rating they included in the model calculated? By the day or by the month? I guess it was by the day, as they "estimate female reproductive state daily" (line 123). If so, it should be made clear in the text.
We rephrased accordingly: “We used all avoidance and displacement interactions throughout the study period and we used the function elo.seq from R package EloRating to infer daily individual female Elo-scores”. We also clarified that “This method takes into account the temporal sequence of interactions and updates an individual’s Elo-scores each day the individual interacted with another...”
In addition, all groups were long-term studied, and the group composition seems fluctuant based on the Table 1 in Reference 11. When an individual enters/leaves the group with a stable hierarchy, it takes time before the hierarchy turns stable again. If the avoidance/displacement behaviors used for the rank relationship were not common, it would take a few days or maybe longer. Also, were the aggressive behaviors more common during rank fluctuations? In other words, if avoidance/displacement behaviors and aggressive behaviors occur simultaneously during rank fluctuations, how did the authors deal with it and take it into consideration in the analysis?
We have shown in Reference 25 (Smit & Robbins 2025) after Reference 11 (Smit & Robbins 2024) that females form highly stable hierarchies, and that dyadic dominance relationships are not influenced by dispersal or death of third individuals. Notably, new immigrant females usually start at and remain low ranking, without large fluctuations in rank. Therefore, the presence of any fluctuation periods have limited influence in the aggressive interactions in our study system.
The authors emphasized several times in the text that gorillas "form highly stable hierarchical relationships". Also, in Reference 25, they found very high stabilities of each group's hierarchy. However, the number of females involved in that analysis was different from that used here. They need to provide more basic info on each group's dominance hierarchy and verify their statement. I strongly suggest that the authors display Elo-rating trajectories and necessary relevant statistics for each group throughout the study period as part of the supplementary materials.
In fact, the females involved in the present analysis and the analysis of Smit & Robbins 2025 are the same. Our present analysis is based on the hierarchies of Smit & Robbins 2025. Note that female gorillas disperse and occasionally immigrate to another study group. This is why some females may appear in the hierarchies of more than one group, giving the impression that there are more females involved in the analysis of Smit & Robbins 2025 (e.g. by counting the lines in the Elo-rating plots). We now specifically state that “We present these interactions and hierarchies in detail in Smit & Robbins 2025”, to clarify that the hierarchies are the same.
(3) The authors stated why they differentiated the different stages based on female reproductive status. They also referred to the differences in energetic needs between stages of pregnancy and lactation (lines 127-128). However, in the mixed model, they only compared the interaction score between the female cycling stage and other stages. The model was not well explained, and the results could be expanded. I suggest conducting more pairwise comparisons in the model and presenting the statistics in the text, if there are significant results. If all three pregnancy stages differed significantly from cycling and lactating stages but not from each other, they may be merged as one pregnancy stage. More in-depth analysis would help provide better answers to the research questions.
Thank you for pointing this out. First, when we considered one pregnancy stage, pregnant females showed indeed a significantly greater interaction score than females in other reproductive stages. We have now included that in the manuscript. However, we still find relevant to test for the different stages of pregnancy, given the difference of energetic needs in these stages. We have now included the pairwise comparisons in a new table (Table 2).
Reviewer #3 (Public review):
Smit and Robbins' manuscript investigates the dynamics of aggression among female groupmates across five gorilla groups. The authors utilize longitudinal data to examine how reproductive state, group size, presence of males, and resource availability influence patterns of aggression and overall dominance rankings as measured by Elo scores. The findings underscore the important role of group composition and reproductive status, particularly pregnancy, in shaping dominance relationships in wild gorillas. While the study addresses a compelling and understudied topic, I have several comments and suggestions that may enhance clarity and improve the reader's experience.
(1) Clarification of longitudinal data - The manuscript states that 25 years of behavioral data were used, but this number appears unclear. Based on my calculations, the maximum duration of behavioral observation for any one group appears to be 18 years. Specifically:
- ATA: 6 years
- BIT: 8 years
- KYA: 18 years
- MUK: 6 years
- ORU: 8 years
I recommend that the authors clarify how the 25-year duration was derived.
Indeed none of the five study “groups” has been studied for 25 years in a row. However, MUK emerged from a fission of group KYA in early 2016. So, from the start of group KYA in October 1998 to the end of group MUK in December 2023, there are 25 years and 2 months. We have now rephrased to “...starting in 1998 in one of the mountain gorilla groups” in the introduction, and to “We use a long-term behavioural dataset on five wild groups of the two gorilla species, starting in 1998” in the abstract.
(2) Consideration of group size - The authors mention that group size was excluded from analyses to avoid conflating the opposing effects of female and male group members. While this is understandable, it may still be beneficial to explore group size effects in supplementary analyses. I suggest reporting statistics related to group size and potentially including a supplementary figure. Additionally, given that the study includes both mountain and wild gorillas, it would be helpful to examine whether any interspecies differences are apparent.
We have now added the suggested extra test: “When we ran our analysis testing for group size (number of weaned individuals in the group), instead of the numbers of females and males, its influence on interaction score was not significant (estimate=-0.001, p-value=0.682).”
Regarding species differences: In our analysis, we test for species (mountain vs western) and we find no significant differences between the two. This is stated in the results.
(3) Behavioral measures clarification - Lines 112-116 describe the types of aggressive behaviors observed. It would be helpful to clarify how these behaviors differ from those used to calculate Elo scores, or whether they overlap. A brief explanation would improve transparency regarding the methodology.
We now added short explanations into brackets for behaviours that are not obvious. We also added a sentence in the text to clarify the difference with the behaviours used to calculate Elo scores: “These two behaviours [avoidance and displacement] are ritualized, occurring in absence of aggression, they are considered a more reliable proxy of power relationships over aggression, and they are typically used to infer gorilla hierarchical relationships”.
(4) Aggression rates versus Elo scores - The manuscript uses aggression rates rather than dominance rank (as measured by Elo scores) as the main outcome variable, but there is no explanation on why. How would the results differ if aggression rates were replaced or supplemented with Elo scores? The current justification for prioritizing aggression rates over dominance rank needs to be more clearly supported.
The sentence we added above (“These two behaviours [avoidance and displacement] are ritualized, occurring in absence of aggression, they are considered a more reliable proxy of power relationships over aggression, and they are typically used to infer gorilla hierarchical relationships”) and the first paragraph of the results hopefully clarify that ritualized agonistic interactions are generally directionally consistent and more reliably capture the highly stable dominance relationships of female gorillas. This approach has been used to calculate dominance rank in gorillas in all studies that have considered it, dating back to the 1970s (namely in studies by Harcourt and Watts). On the other hand, aggression can be context dependent (we now clearly note that in the beginning of the Methods paragraph on aggressive interactions). Therefore, we use Eloscores inferred from ritualized interactions as base and a reliable proxy of power relationships; then we test if the direction of aggression within these relationships is driven also by energetic needs or the social environment.
-