Anterior cingulate cortex in complex associative learning: monitoring action state and action content

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    Huang and colleagues examined neural responses in mouse anterior cingulate cortex (ACC) during a discrimination-avoidance task. The authors present useful findings that ACC neurons encode primarily post-action variables over extended periods rather than the outcomes or values of those actions. Though the methodological approach was sound, the evidence ruling out alternative explanations is incomplete and requires substantial control analyses.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Environmental changes necessitate adaptive responses, and thus the ability to monitor one’s actions and their connection to specific cues and outcomes is crucial for survival. The anterior cingulate cortex (ACC) is implicated in these processes, yet its precise role in action monitoring and outcome evaluation remains unclear. To investigate this, we developed a novel discrimination–avoidance task for mice, designed with clear temporal separation between actions and outcomes. Our findings show that ACC neurons primarily encode post-action variables over extended periods, reflecting the animal’s preceding actions rather than the outcomes or values of those actions. Specifically, we identified two distinct subpopulations of ACC neurons: one encoding the action state (whether an action was taken) and the other encoding the action content (which action was taken). Importantly, increased post-action ACC activity was associated with better performance in subsequent trials. These findings suggest that the ACC supports complex associative learning through extended signaling of rich action-relevant information, thereby bridging cue, action, and outcome associations.

Article activity feed

  1. eLife Assessment

    Huang and colleagues examined neural responses in mouse anterior cingulate cortex (ACC) during a discrimination-avoidance task. The authors present useful findings that ACC neurons encode primarily post-action variables over extended periods rather than the outcomes or values of those actions. Though the methodological approach was sound, the evidence ruling out alternative explanations is incomplete and requires substantial control analyses.

  2. Reviewer #1 (Public review):

    Summary:

    In the current study, Huang et al. examined ACC response during a novel discrimination-avoid task. The authors concluded that ACC neurons primarily encode post-action variables over extended periods, reflecting the animal's preceding actions rather than the outcomes or values of those actions. Specifically, they identified two subgroups of ACC neurons that responded to different aspects of the actions. This work represents admirable efforts to investigate the role of ACC in task-performing mice. However, in my opinion, alternative explanations of the data were not sufficiently explored, and some key findings were not well supported.

    Strengths:

    The development of the new discrimination-avoid task is applauded. Single-unit electrophysiology in task-performing animals represents admirable efforts and …

  3. Reviewer #2 (Public review):

    Summary:

    The current dataset utilized a 2x2 factorial shuttle-escape task in combination with extracellular single-unit recording in the anterior cingulate cortex (ACC) of mice to determine ACC action coding. The contributions of neocortical signaling to action-outcome learning as assessed by behavioral tasks outside of the prototypical reward versus non-reward or punished vs non-punished is an important and relevant research topic, given that ACC plays a clear role in several human neurological and psychiatric conditions. The authors present useful findings regarding the role of ACC in action monitoring and learning. The core methods themselves - electrophysiology and behavior - are adequate; however, the analyses are incomplete since ruling out alternative explanations for neural activity, such as movement …

  4. Reviewer #3 (Public review):

    Summary:

    The authors record from the ACC during a task in which animals must switch contexts to avoid shock as instructed by a cue. As expected, they find neurons that encode context, with some encoding of actions prior to the context, and encoding of neurons post-action. The primary novelty of the task seems to be dynamically encoding action-outcome in a discrimination-avoidance domain, while this is traditionally done using operant methods. While I'm not sure that this task is all that novel, I can't recall this being applied to the frontal cortex before, and this extends the well-known action/context/post-context encoding of ACC to the discrimination-avoidance domain.

    While the analysis is well done, there are several points that I believe should be elaborated upon. First, I had questions about several …

  5. Author response:

    We thank the reviewers for their insightful feedback. Incorporating their recommendations will greatly enhance our manuscript for resubmission. Based on the review, it seems a major challenge to the interpretation of our study surrounds whether locomotion, itself, is responsible for increased ACC activity during our task. This was a shared concern for us during our analysis. We included data in our initial submission hoping to address these concerns. Specifically, we show that post-action activity outlasts movement termination, in most cases, on the order seconds after termination (Supplementary Fig 2). Likewise, post-action activity is not tied to shuttle initiations as ACC activity onset can vary greatly before and after initiation (Supplementary Fig 2). Lastly, the unique nature of action content neurons further …