The C-terminus of the multi-drug efflux pump EmrE prevents proton leak by gating transport

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    This fundamental study provides a comprehensive analysis of the EmrE efflux pump and the role of the C-terminal domain in preventing uncoupled proton leak in the absence of substrate. The evidence supporting the conclusions is solid, although incomplete analyses limit some of the conclusions.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The model multi-drug efflux pump from Escherichia coli , EmrE, can perform multiple types of transport leading to different biological outcomes, conferring resistance to some drug substrates and enhancing susceptibility to others. While transporters have traditionally been classified as antiporters, symporters, or uniporters, there is growing recognition that some transporters may exhibit mixed modalities. This raises new questions about the regulation and mechanisms of these transporters. Here we show that the C-terminal tail of EmrE acts as a secondary gate, preventing proton leak in the absence of drug. Substrate binding unlocks this gate, allowing transport to proceed. Truncation of the C-terminal tail (Δ107-EmrE) leads to altered pH regulation of alternating access, an important kinetic step in the transport cycle, as measured by NMR. Δ107-EmrE has increased proton leak in proteoliposome assays and bacteria expressing this mutant have reduced growth. MD simulations of Δ107-EmrE show formation of a water wire from the open face of the transporter to the primary binding site in the core, facilitating proton leak. In WT-EmrE, the C-terminal tail forms specific interactions that block formation of the water wire. Together these data strongly support the C-terminus of EmrE acting as a secondary gate that regulates access to the primary binding site in the core of the transporter.

Article activity feed

  1. Author response:

    We appreciate the reviewers thoughtful consideration of our manuscript, and their recognition of the variety of experimental and computational approaches we have brought to bear in probing the very challenging question of uncoupled proton leak through EmrE.

    We did record SSME measurements with MeTPP+, a small molecule substrate at two different protein:lipid ratios. These experiments report the rate of net flux when both proton-coupled substrate antiport and substrate-gated proton leak are possible. We will add this data to the revision, including data acquired with different lipid:protein ratio that confirms we are detecting transport rather than binding. In brief, this data shows that the net flux is highly dependent on both proton concentration (pH) and drug-substrate concentration, as predicted by our mechanistic model. This demonstrates that both types of transport contribute to net flux when small molecule substrates are present.

    In the absence of drug-substrate, proton leak is the only possible transport pathway. The pyranine assay directly assesses proton leak under these conditions and unambiguously shows faster proton entry into proteoliposomes through the ∆107-EmrE mutant than through WT EmrE, with the rate of proton entry into ∆107-EmrE proteoliposomes matching the rate of proton entry achieved by the protonophore CCCP. We have revised the text to more clearly emphasize how this directly measures proton leak independently of any other type of transport activity. The SSME experiments with a proton gradient only (no small molecule substrate present) provide additional data on shorter timescales that is consistent with the pyranine data. The consistency of the data across multiple LPRs and comparison of transport to proton leak in the SSME assays further strengthens the importance of the C-terminal tail in determining the rate of flux.

    None of the current structural models have good resolution (crystallography, EM) or sufficient restraints (NMR) to define the loop and tail conformations sufficiently for comparison with this work. We are in the process of refining an experimental structure of EmrE with better resolution of the loop and tail regions implicated in proton-entry and leak. Direct assessment of structural interactions via mutagenesis is complicated because of the antiparallel homodimer structure of EmrE. Any point mutation necessarily affects both subunits of the dimer, and mutations designed to probe the hydrophobic gate on the more open face of the transporter also have the potential to disrupt closure on the opposite face, particularly in the absence of sufficient resolution in the available structures. Thus, mutagenesis to test specific predicted structural features is deferred until our structure is complete so that we can appropriately interpret the results.

    In our simulation setup, the MD results can be considered representative and meaningful for two reasons. First, the C-terminal tail, not present in the prior structure and thus modeled by us, is only 4 residues long. We will show in the revision and detailed response that the system will lose memory of its previous conformation very quickly, such that velocity initialization alone is enough for a diverse starting point. Second, our simulation is more like simulated annealing, starting from a high free energy state to show that, given such random initialization, the tail conformation we get in the end is consistent with what we reported. It is also difficult to sample back-and-forth tail motion within a realistic MD timescale. Therefore, it can be unconclusive to causally infer the allosteric motions with unbiased MD of the wildtype alone. The best viable way is to look at the equilibrium statistics of the most stable states between WT- and ∆107-EmrE and compare the differences.

  2. eLife Assessment

    This fundamental study provides a comprehensive analysis of the EmrE efflux pump and the role of the C-terminal domain in preventing uncoupled proton leak in the absence of substrate. The evidence supporting the conclusions is solid, although incomplete analyses limit some of the conclusions.

  3. Reviewer #1 (Public review):

    Summary:

    Work by Brosseau et. al. combines NMR, biochemical assays, and MD simulations to characterize the influence of the C-terminal tail of EmrE, a model multi-drug efflux pump, on proton leak. The authors compare the WT pump to a C-terminal tail deletion, delta_107, finding that the mutant has increased proton leak in proteoliposome assays, shifted pH dependence with a new titratable residue, faster-alternating access at high pH values, and reduced growth, consistent with proton leak of the PMF.

    Strengths:

    The work combines thorough experimental analysis of structural, dynamic, and electrochemical properties of the mutant relative to WT proteins. The computational work is well aligned in vision and analysis. Although all questions are not answered, the authors lay out a logical exploration of the possible explanations.

    Weaknesses:

    There are a few analyses that are missing and important data left out. For example, the relative rate of drug efflux of the mutant should be reported to justify the focus on proton leak. Additionally, the correlation between structural interactions should be directly analyzed and the mutant PMF also analyzed to justify the claims based on hydration alone. Some aspects of the increased dynamics at high pH due to a potential salt bridge are not clear.

  4. Reviewer #2 (Public review):

    Summary:

    This manuscript explores the role of the C-terminal tail of EmrE in controlling uncoupled proton flux. Leakage occurs in the wild-type transporter under certain conditions but is amplified in the C-terminal truncation mutant D107. The authors use an impressive combination of growth assays, transport assays, NMR on WT and mutants with and without key substrates, classical MD, and reactive MD to address this problem. Overall, I think that the claims are well supported by the data, but I am most concerned about the reproducibility of the MD data, initial structures used for simulations, and the stochasticity of the water wire formation. These can all be addressed in a revision with more simulations as I point out below. I want to point out that the discussion was very nicely written, and I enjoyed reading the summary of the data and the connection to other studies very much.

    Strengths:

    The Henzler-Wildman lab is at the forefront of using quantitative experiments to probe the peculiarities in transporter biophysics, and the MD work from the Voth lab complements the experiments quite well. The sheer number of different types of experimental and computational approaches performed here is impressive.

    Weaknesses:

    The primary weaknesses are related to the reproducibility of the MD results with regard to the formation of water wires in the WT and truncation mutant. This could be resolved with simulations starting from structures built using very different loops and C-terminal tails.

    The water wire gates identified in the MD should be tested experimentally with site-directed mutagenesis to determine if those residues do impact leak.