Molecular architecture of thylakoid membranes within intact spinach chloroplasts

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    The macromolecular organization of photosynthetic complexes within the thylakoids of higher plant chloroplasts has been a topic of significant debate. Using in situ cryo-electron tomography, this study reveals the native thylakoid architecture of spinach thylakoid membranes with single-molecule precision. The experimental methods are unique and compelling, providing important information for understanding the structural features that impact photosynthetic regulation in vascular plants and addressing several long-standing questions about the organization and regulation of photosynthesis.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Thylakoid membranes coordinate the light reactions of photosynthesis across multiple scales, coupling the architecture of an elaborate membrane network to the spatial organization of individual protein complexes embedded within this network. Previously, we used in situ cryo- electron tomography (cryo-ET) to reveal the native thylakoid architecture of the green alga Chlamydomonas reinhardtii [1] and then map the molecular organization of these thylakoids with single-molecule precision [2]. However, it remains to be shown how generalizable this green algal blueprint is to the thylakoids of vascular plants, which possess distinct membrane architecture subdivided into grana stacks interconnected by non-stacked stromal lamellae. Here, we continue our cryo-ET investigation to reveal the molecular architecture of thylakoids within intact chloroplasts isolated from spinach ( Spinacia oleracea ). We visualize the fine ultrastructural details of grana membranes, as well as interactions between thylakoids and plastoglobules. We apply and further develop AI-based computational approaches for automated membrane segmentation and membrane protein picking [3], enabling us to quantify the organization of photosynthetic complexes within the plane of the thylakoid membrane and across adjacent stacked membranes. Our analysis reveals that, despite different 3D architecture, the molecular organization of thylakoid membranes in vascular plants and green algae is strikingly similar. In contrast to isolated plant thylakoids, where semi- crystalline arrays of photosystem II (PSII) appear to hold some membranes together, we find in intact chloroplasts that PSII is non-crystalline and has uniform concentration both within the membrane plane and across stacked grana membranes. Similar to C. reinhardtii , we observe strict lateral heterogeneity of PSII and PSI at the boundary between appressed and non-appressed thylakoid domains, with no evidence for a distinct grana margin region where these complexes have been proposed to intermix. Based on these measurements, we support a simple two-domain model for the molecular organization of thylakoid membranes in both green algae and plants.

Article activity feed

  1. eLife Assessment

    The macromolecular organization of photosynthetic complexes within the thylakoids of higher plant chloroplasts has been a topic of significant debate. Using in situ cryo-electron tomography, this study reveals the native thylakoid architecture of spinach thylakoid membranes with single-molecule precision. The experimental methods are unique and compelling, providing important information for understanding the structural features that impact photosynthetic regulation in vascular plants and addressing several long-standing questions about the organization and regulation of photosynthesis.

  2. Reviewer #1 (Public review):

    Summary:

    In this study, authors utilized in situ cryo-electron tomography (cryo-ET) to uncover the native thylakoid architecture of spinach chloroplasts and mapped the molecular organization of these thylakoids with single-molecule resolution. The obtained images show the detailed ultrastructural features of grana membranes and highlight interactions between thylakoids and plastoglobules. Interestingly, despite the distinct three-dimensional architecture of vascular plant thylakoids, their molecular organization closely resembles that of green algae. The pronounced lateral segregation of PSII and PSI was observed at the interface between appressed and non-appressed thylakoid regions, without evidence of a specialized grana margin zone where these complexes might intermix. Furthermore, unlike isolated thylakoid membranes, photosystem II (PSII) did not form a semi-crystalline array and distributed uniformly within the membrane plane and across stacked grana membranes in intact chloroplasts. Based on the above observations, the authors propose a simplified two-domain model for the molecular organization of thylakoid membranes that can apply to both green algae and vascular plants. This study suggests that the general understanding of the functional separation of thylakoid membranes in vascular plants should be reconsidered.

    Strengths:

    By employing and refining AI-driven computational tools for the automated segmentation of membranes and identification of membrane proteins, this study successfully quantifies the spatial organization of photosynthetic complexes both within individual thylakoid membranes and across neighboring stacked membranes.

    Weaknesses:

    This study's weakness is that it requires the use of chloroplasts isolated from leaves and the need to freeze them on a grid for observation, so it is unclear to what extent the observations reflect physiological conditions. In particular, the mode of existence of the thylakoid membrane complexes seems to be strongly influenced by the physicochemical environment surrounding the membranes, as indicated by the different distribution of PSII between intact chloroplasts and those with ruptured envelope membranes.

  3. Reviewer #2 (Public review):

    Summary:

    For decades, the macromolecular organization of photosynthetic complexes within the thylakoids of higher plant chloroplasts has been a topic of significant debate. Using focused ion beam milling, cryo-electron tomography, and advanced AI-based image analysis, the authors compellingly demonstrate that the macromolecular organization in spinach thylakoids closely mirrors the patterns observed in their earlier research on Chlamydomonas reinhardtii. Their findings provide strong evidence challenging long-standing assumptions about the existence of a 'grana margin'-a region at the interface between grana and stroma lamellae domains that was thought to contain intermixed particles from both areas. Instead, the study establishes that this mixed zone is absent and reveals a distinct, well-defined boundary between the grana and stroma lamellae.

    Strengths:

    By situating high-resolution structural data within the broader cellular context, this work contributes valuable insights into the molecular mechanisms governing the spatial organization of photosynthetic complexes within thylakoid membranes.