The C3-C3aR axis modulates trained immunity in alveolar macrophages

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    This study explores how complement protein C3 and its signalling may modulate immune training in alveolar macrophages. The findings are an important contribution to the field of trained immunity. The data presented is mainly solid, but incomplete in parts.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Complement protein C3 is crucial for immune responses in mucosal sites such as the lung, where it aids in microbe elimination and enhances inflammation. While trained immunity – enhanced secondary responses of innate immune cells after prior exposure – is well-studied, the role of the complement system in trained immune responses remains unclear. We investigated the role of C3 in trained immunity and found that in vivo , trained wild-type mice showed significantly elevated pro-inflammatory cytokines and increased C3a levels upon a second stimulus, whereas C3-deficient mice exhibited a blunted cytokine response and heightened evidence of lung injury. Ex vivo , C3-deficient alveolar macrophages (AMs) displayed reduced chemokine and cytokine output after training, which was restored by exogenous C3 but not by C3a. Inhibiting C3aR, both pharmacologically and with a genetic C3aR knockout, prevented this restoration, indicating the necessity of C3aR engagement. Mechanistically, trained WT AMs demonstrated enhanced glycolytic activity compared to C3-deficient AMs – a defect corrected by exogenous C3 in a C3aR-dependent manner. These findings reveal that C3 modulates trained immunity in AMs through C3aR signaling, affecting cytokine production and metabolic reprogramming, and highlight a novel role for C3 in trained immunity.

Article activity feed

  1. eLife Assessment

    This study explores how complement protein C3 and its signalling may modulate immune training in alveolar macrophages. The findings are an important contribution to the field of trained immunity. The data presented is mainly solid, but incomplete in parts.

  2. Reviewer #1 (Public review):

    Summary:

    This study is built on the emerging knowledge of trained immunity, where innate immune cells exhibit enhanced inflammatory responses upon being challenged by a prior insult. Trained immunity is now a very fast-evolving field and has been explored in diverse disease conditions and immune cell types. Earhart and the team approached the topic from a novel angle and were the first to explore a potential link to the complement system.

    The study focused on the central complement protein C3 and investigated how its signalling may modulate immune training in alveolar macrophages. The authors first performed in vivo experiments in C57BL mouse models to observe the presence of enhanced inflammation and C3a in BAL fluid following immune training. These changes were then compared with those from C3-deficient …

  3. Reviewer #2 (Public review):

    Earhart et al. investigated the role of the complement system in trained innate immunity (TII) in alveolar macrophages (AM). They used a WT and C3 knockout murine model primed with locally administered heat-killed P. aeruginosa (HKPA). Additionally, they employed ex vivo AM training models using C3 knockout mice, where reconstitution of C3 and blockade of C3R were performed. The study concluded that the C3-C3R axis is essential for inducing TII in macrophages in the ex vivo model. The manuscript is well-written and easy to follow. However, I have the following major concerns.

    (1) The secondary challenge to assess the reprogramming of innate cells in the BAL was conducted 14 days after the initial exposure to HKPA. However, no evidence is provided to confirm that homeostasis was re-established following the …

  4. Author response:

    We thank both reviewers for their suggestions on improving our manuscript, which is focused on demonstrating that the C3a-C3aR axis modulates trained immune responses in alveolar macrophages. The Short Report format precludes separating the Results and Discussion sections. However, we will work towards a clearer presentation of findings and providing a more comprehensive interpretation of the data in the Revision, by addressing the points brought up by both Reviewers.

    We agree with the suggestions from Reviewer 1 that (1) other cell types such as dendritic cells, neutrophils, and endothelial cells can also be involved in immune training, and (2) macrophages have other activities beyond releasing inflammatory cytokines, and will clarify both these points in the Revision. The mechanism of C3 being cleaved intracellularly …