Adult Neurogenesis Reconciles Flexibility and Stability of Olfactory Perceptual Memory

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    In this important study, the authors use computational modeling to explore how rapid learning can be reconciled with the accumulation of stable memories in the olfactory bulb, where adult neurogenesis is prominent. They focus on the "flexibility-stability dilemma" and how it is resolved through local mechanisms within the olfactory bulb. These compelling results present a coherent picture of a neurogenesis-dependent learning process that aligns with diverse experimental observations and may serve as a foundation for further experimental and computational studies.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

In brain regions featuring ongoing plasticity, the task of quickly encoding new information without overwriting old memories presents a significant challenge. In the rodent olfactory bulb, which is renowned for substantial structural plasticity driven by adult neurogenesis and persistent turnover of dendritic spines, we show that by synergistically combining both types of plasticity this flexibility-stability dilemma can be overcome. To do so, we develop a computational model for structural plasticity in the olfactory bulb and show that it is the maturation process of adult-born neurons that enables the bulb to learn quickly and forget slowly. Particularly important are the transient enhancement of the plasticity, excitability, and susceptibility to apoptosis that characterizes young neurons. The model captures many experimental observations and makes a number of testable predictions. Overall, it identifies memory consolidation as an important role of adult neurogenesis in olfaction and exemplifies how the brain can maintain stable memories despite ongoing extensive neurogenesis and synaptic plasticity.

Article activity feed

  1. eLife Assessment

    In this important study, the authors use computational modeling to explore how rapid learning can be reconciled with the accumulation of stable memories in the olfactory bulb, where adult neurogenesis is prominent. They focus on the "flexibility-stability dilemma" and how it is resolved through local mechanisms within the olfactory bulb. These compelling results present a coherent picture of a neurogenesis-dependent learning process that aligns with diverse experimental observations and may serve as a foundation for further experimental and computational studies.

  2. Reviewer #1 (Public review):

    Summary:

    Sakelaris and Riecke used computational modeling to explore how neurogenesis and sequential integration of new neurons into a network support memory formation and maintenance. They focus on the integration of granule cells in the olfactory bulb, a brain area where adult neurogenesis is prominent. Experimental results published in recent years provide an excellent basis to address the question at hand by biologically constrained models. The study extends previous computational models and provides a coherent picture of how multiple processes may act in concert to enable rapid learning, high stability of memories, and high memory capacity. This computational model generates experimentally testable predictions and is likely to be valuable to understand the roles of neurogenesis and related phenomena in memory. One of the key findings is that important features of the memory system depend on transient properties of adult-born granule cells such as enhanced excitability and apoptosis during specific phases of the development of individual neurons. The model can explain many experimental observations and suggests specific functions for different processes (e.g., importance of apoptosis for continual learning). While this model is obviously a massive simplification of the biological system, it conceptualizes diverse experimental observations into a coherent picture, it generates testable predictions for experiments, and it will likely inspire further modeling and experimental studies. Nonetheless, there are issues that the authors should address.

    Strengths:

    (1) The model can explain diverse experimental observations.

    (2) The model directly represents the biological network.

    Weaknesses:

    As with many other models of biological networks, this model contains major simplifications.

  3. Reviewer #2 (Public review):

    Summary:

    This is an excellent paper that demonstrates Computational Modeling at its best. The authors propose a mechanism to provide flexibility to learn new information while preserving stability in neural networks by combining structural plasticity and synaptic plasticity.

    Strengths:

    An intriguing idea, that is well embedded in experimental data.

    The problem posed is real, the model uses data to be designed and implemented yet adds to the data novel and useful insight. The project proposes a parsimonious explanation for why neurogenesis can be better than classical plasticity and how stability versus flexibility can be solved with this approach.

    Weaknesses:

    No weaknesses were identified by this reviewer.

  4. Reviewer #3 (Public review):

    The manuscript is focused on local bulbar mechanisms to solve the flexibility-stability dilemma in contrast to long-range interactions documented in other systems (hippocampus-cortex). The network performance is assessed in a perceptual learning task: the network is presented with alternating, similar artificial stimuli (defined as enrichment) and the authors assess its ability to discriminate between these stimuli by comparing the mitral cell representations quantified by Fisher discriminant analysis. The authors use enhancement in discriminability between stimuli as a function of the degree of specificity of connectivity in the network to quantify the formation of an odor-specific network structure which as such has memory - they quantify memory as the specificity of that connectivity.

    The focus on neurogenesis, excitability, and synaptic connectivity of abGCs is topical, and the authors systematically built their model, clearly stating their assumptions and setting up the questions and answers. In my opinion, the combination of latent dendritic representations, excitability, and apoptosis in an age-dependent manner is interesting and as the authors point out leads to experimentally testable hypotheses. I have however several concerns with the novelty of the work, the lack of referencing of previous work on granule cells-mitral cell interactions more generally, and the biological plausibility of the model that, in my opinion, should be further addressed to better contextualize the model.

    (1) The authors find that a network with age-dependent synaptic plasticity outperforms one with constant age-independent plasticity and that having more GC per se is not sufficient to explain this effect. In addition, having an initial higher excitability of GCs leads to increased performance. To what degree the increased excitability of abGCs is conceptually necessarily independent of them having higher synaptic plasticity rates / fast synapses?

    (2) The authors do not mention previous theoretical work on the specificity of mitral to granule cell interactions from several groups (Koulakov & Rinberg - Neuron, 2011; Gilra & Bhalla, PLoSOne, 2015; Grabska-Bawinska...Mainen, Pouget, Latham, Nat. Neurosci. 2017; Tootoonian, Schaefer, Latham, PLoS Comput. Biol., 2022), nor work on the relevance of top-down feedback from the olfactory cortex on the abGC during odor discrimination tasks (Wu & Komiyama, Sci. Adv. 2020), or of top-down regulation from the olfactory cortex on regulating the activity of the mitral/tufted cells in task engaged mice (Lindeman et al., PLoS Comput. Biol., 2024), or in naïve mice that encounter odorants (in the absence of specific context; Boyd, et al., Cell Rep, 2015; Otazu et al., Neuron 2015, Chae et al., Neuron, 2022). In particular, the presence of rich top-down control of granule cell activity (including of abGCs) puts into question the plausibility of one of the opening statements of the authors with respect to relying solely on local circuit mechanisms to solve the flexibility-stability dilemma. I think the discussion of this work is important in order to put into context the idea of specific interactions between the abGCs and the mitral cells.

    (3) To what the degree of specific connectivity reflects a specific stimulus configuration, and is a good proxy for determining the stimulus discriminability and memory capacity in terms of temporal activity patterns (difference in latency/phase with respect to the respiration cycle, etc.) which may account to a substantial fraction of ability to discriminate between stimuli? The authors mention in the discussion that this is, indeed, an upper bound and specific connectivity is necessary for different temporal activity patterns, but a further expansion on this topic would help in understanding the limitations of the model.

    (4) Reward or reward prediction error signals are not considered in the model. They however are ubiquitous in nature and likely to be encountered and shape the connectivity and activity patterns of the abGC-mitral cell network. Including a discussion of how the model may be adjusted to incorporate reward/error signals would strengthen the manuscript.

    Specific Comments

    (1) Lines 84-86; 507-509; Eq(3): Sensory input is defined by a basal parameter of MCs spontaneous activity (Sspontaneus) and the odor stimuli input (Siodor) but is not clear from the main text or methods how sensory inputs (glomerular patterns) were modeled.

    (2) Lines 118-122: The used perceptual learning task explanation is done only in the context of the discriminability of similar artificial stimuli using the Fisher discriminant and "Memory" metric. A detailed description of the logic of the perceptual learning task methods and objective, taking into account Comment 1, would help to better understand the model.

    (3) Rapid re-learning of forgotten odor pair is enabled by sensory-dependent dendritic elaboration of neurons that initially encoded the odors and the observed re-learning would occur even if neurogenesis was blocked following the first enrichment and even though the initial learning did require neurogenesis. When this would ever occur in nature? The re-learning of an odor period? Why is this highlighted in the study?