FtsK Initiates the Assembly of a Unique Divisome Complex in the FtsZ-less Chlamydia trachomatis

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    In this important study, significant advancements are made in how cell division in Chlamydia trachomatis, lacking FtsZ, is mediated. With the careful use of fluorescence microscopy and genetic tools, the evidence identifying the DNA translocase, FtsK, as an early and essential component of the divisome, is convincing. As this role is distinct from what has been found in most other bacteria, this study will be of broad interest to microbiologists and molecular biologists.

This article has been Reviewed by the following groups

Read the full article

Abstract

Chlamydia trachomatis serovar L2 ( Ct ), an obligate intracellular bacterium that does not encode FtsZ, divides by a polarized budding process. In the absence of FtsZ, we show that divisome assembly in Ct is initiated by FtsK, a chromosomal translocase. Chlamydial FtsK forms discrete foci at the septum and at the base of the progenitor mother cell, and our data indicate that FtsK foci at the base of the mother cell mark the location of nascent divisome complexes that form at the site where a daughter cell will emerge in the next round of division. The divisome in Ct has a hybrid composition, containing elements of the divisome and elongasome from other bacteria, and FtsK is recruited to nascent divisomes prior to the other chlamydial divisome proteins assayed, including the PBP2 and PBP3 transpeptidases, and MreB and MreC. Knocking down FtsK prevents divisome assembly in Ct and inhibits cell division and septal peptidoglycan synthesis. We further show that MreB does not function like FtsZ and serve as a scaffold for the assembly of the Ct divisome. Rather, MreB is one of the last proteins recruited to the chlamydial divisome, and it is necessary for the formation of septal peptidoglycan rings. Our studies illustrate the critical function of chlamydial FtsK in coordinating divisome assembly and peptidoglycan synthesis in this obligate intracellular bacterial pathogen.

Article activity feed

  1. eLife Assessment

    In this important study, significant advancements are made in how cell division in Chlamydia trachomatis, lacking FtsZ, is mediated. With the careful use of fluorescence microscopy and genetic tools, the evidence identifying the DNA translocase, FtsK, as an early and essential component of the divisome, is convincing. As this role is distinct from what has been found in most other bacteria, this study will be of broad interest to microbiologists and molecular biologists.

  2. Reviewer #1 (Public review):

    Summary:

    In this work, Harpring et al. investigated divisome assembly in Chlamydia trachomatis serovar L2 (Ct), an obligate intracellular bacterium that lacks FtsZ, the canonical master regulator of bacterial cell division. They find that divisome assembly is initiated by the protein FtsK in Ct by showing that it forms discrete foci at the septum and future division sites. Additionally, knocking down ftsK prevents divisome assembly and inhibits cell division, further supporting their hypothesis that FtsK regulates divisome assembly. Finally, they show that MreB is one of the last chlamydial divisome proteins to arrive at the site of division and is necessary for the formation of septal peptidoglycan rings but does not act as a scaffold for division assembly as previously proposed.

    Strengths:

    The authors use microscopy to clearly show that FtsK forms foci both at the septum as well as at the base of the progenitor cell where the next septum will form. They also show that the Ct proteins PBP2, PBP3, MreC, and MreB localize to these same sites suggesting they are involved in the divisome complex.

    Using CRISPRi the authors knock down ftsK and find that most cells are no longer able to divide and that PBP2 and PBP3 no longer localized to sites of division suggesting that FtsK is responsible for initiating divisome assembly. They also performed a knockdown of pbp2 using the same approach and found that this also mostly inhibited cell division. Additionally, FtsK was still able to localize in this strain, however PBP3 did not, suggesting that FtsK acts upstream of PBP2 in the divisome assembly process while PBP2 is responsible for the localization of PBP3.

    The authors also find that performing a knockdown of ftsK also prevents new PG synthesis further supporting the idea that FtsK regulates divisome assembly. They also find that inhibiting MreB filament formation using A22 results in diffuse PG, suggesting that MreB filament formation is necessary for proper PG synthesis to drive cell division.

    Overall the authors propose a new hypothesis for divisome assembly in an organism that lacks FtsZ and use a combination of microscopy and genetics to support their model that is rigorous and convincing. The finding that FtsK, rather than a cytoskeletal or "scaffolding" protein is the first division protein to localize to the incipient division site is unexpected and opens up a host of questions about its regulation. The findings will progress our understanding of how cell division is accomplished in bacteria with non-canonical cell wall structure and/or that lack FtsZ.

    Weaknesses:

    No major weaknesses were noted in the data supporting the main conclusions. However, there was a claim of novelty in showing that multiple divisome complexes can drive cell wall synthesis simultaneously that was not well-supported (i.e. this has been shown previously in other organisms). In addition, there were minor weaknesses in data presentation that do not substantially impact interpretation (e.g. presenting the number of cells rather than the percentage of the population when quantifying phenotypes and showing partial western blots instead of total western blots).

  3. Reviewer #2 (Public review):

    Summary:

    Chlamydial cell division is a peculiar event, whose mechanism was mysterious for many years. C. trachomatis division was shown to be polar and involve a minimal divisome machinery composed of both homologues of divisome and elongasome components, in the absence of an homologue of the classical division organizer FtsZ. In this paper, Harpring et al., show that FtsK is required at an early stage of the chlamydial divisome formation.

    Strengths:

    The manuscript is well-written and the results are convincing. Quantification of divisome component localization is well performed, number of replicas and number of cells assessed are sufficient to get convincing data. The use of a CRISPRi approach to knock down some divisome components is an asset and allows a mechanistic understanding of the hierarchy of divisome components.

    Weaknesses:

    The authors did not analyse the role of all potential chlamydial divisome components and did not show how FtsK may initiate the positioning of the divisome. Their conclusion that FtsK initiates the assembly of the divisome is an overinterpretation and is not backed by the data. However, data show convincingly that FtsK, if perhaps not the initiator of chlamydial division, is definitely an early and essential component of the chlamydial divisome.

  4. Reviewer #3 (Public review):

    Summary:

    The obligate intracellular bacterium Chlamydia trachomatis (Ct) divides by binary fission. It lacks FtsZ, but still has many other proteins that regulate the synthesis of septal peptidoglycan, including FtsW and FtsI (PBP3) as well as divisome proteins that recruit and activate them, such as FtsK and FtsQLB. Interestingly, MreB is also required for the division of Ct cells, perhaps by polymerizing to form an FtsZ-like scaffold. Here, Harpring et al. show that MreB does not act early in division and instead is recruited to a protein complex that includes FtsK and PBP2/PBP3. This indicates that Ct cell division is organized by a chimera between conserved divisome and elongasome proteins. Their work also shows convincingly that FtsK is the earliest known step of divisome activity, potentially nucleating the divisome as a single protein complex at the future division site. This is reminiscent of the activity of FtsZ, yet fundamentally different.

    Strengths:

    The study is very well written and presented, and the data are convincing and rigorous. The data underlying the proposed localization dependency order of the various proteins for cell division is well justified by several different approaches using small molecule inhibitors, knockdowns, and fluorescent protein fusions. The proposed dependency pathway of divisome assembly is consistent with the data and with a novel mechanism for MreB in septum synthesis in Ct.

    Weaknesses:

    The paper could be improved by including more information about FtsK, the "focus" of this study. For example, if FtsK really is the FtsZ-like nucleator of the Ct divisome, how is the Ct FtsK different sequence-wise or structurally from FtsK of, e.g. E. coli? Is the N-terminal part of FtsK sufficient for cell division in Ct like it is in E. coli, or is the DNA translocase also involved in focus formation or localization? Addressing those questions would put the proposed initiator role of FtsK in Ct in a better context and make the conclusions more attractive to a wider readership.

    Another weakness is that the title of the paper implies that FtsK alone initiates divisome assembly. However, the data indicate only that FtsK is important at an early stage of divisome assembly, not that it is THE initiator. I suggest modifying the title to account for this--perhaps "FtsK is required to initiate....".