Toward Stable Replication of Genomic Information in Pools of RNA Molecules
Curation statements for this article:-
Curated by eLife
eLife Assessment
This important theoretical study examines the possibility of encoding genomic information in a collective of short overlapping strands (e.g., the Virtual Circular Genome (VCG) model). The study presents solid theoretical arguments, simulations and comparisons to experimental data to point at potential features and limitations of such distributed collective encoding of information. The work should be of relevance to colleagues interested in molecular information processing and to those interested in pre-Central Dogma or prebiotic models of self-replication.
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (eLife)
Abstract
The transition from prebiotic chemistry to living systems requires the emergence of a scheme for enzyme-free genetic replication. Here, we analyze a recently proposed prebiotic replication scenario, the so-called Virtual Circular Genome (VCG) [Zhou et al., RNA 27, 1-11 (2021)]: Replication takes place in a pool of oligomers, where each oligomer contains a subsequence of a circular genome, such that the oligomers encode the full genome collectively. While the sequence of the circular genome may be reconstructed based on long oligomers, short oligomers merely act as replication feedstock. We observe a competition between the predominantly error-free ligation of a short oligomer to a long oligomer and the predominantly erroneous ligation of two long oligomers. Increasing the length of long oligomers and reducing their concentration decreases the fraction of erroneous ligations, enabling high-fidelity replication in the VCG. Alternatively, the problem of erroneous products can be mitigated if only monomers are activated, such that each ligation involves at least one monomer. Surprisingly, in such systems, shorter oligomers are extended by monomers more quickly than long oligomers, a phenomenon which has already been observed experimentally [Ding et al., JACS 145, 7504-7515 (2023)]. Our work provides a theoretical explanation for this behavior, and predicts its dependence on system parameters such as the concentration of long oligomers. Taken together, the VCG constitutes a promising scenario of prebiotic information replication: It could mitigate challenges of in non-enzymatic copying via template-directed polymerization, such as short lengths of copied products and high error rates.
Article activity feed
-
-
-
eLife Assessment
This important theoretical study examines the possibility of encoding genomic information in a collective of short overlapping strands (e.g., the Virtual Circular Genome (VCG) model). The study presents solid theoretical arguments, simulations and comparisons to experimental data to point at potential features and limitations of such distributed collective encoding of information. The work should be of relevance to colleagues interested in molecular information processing and to those interested in pre-Central Dogma or prebiotic models of self-replication.
-
Reviewer #1 (Public review):
Summary:
This is an interesting theoretical study examining the viability of Virtual Circular Genome (VCG) model, a recently proposed scenario of prebiotic replication in which a relatively long sequence is stored as a collection of its shorter subsequences (and their compliments). It was previously pointed out that VCG model is prone to so-called sequence scrambling which limits the overall length of such a genome. In the present paper, additional limitations are identified. Specifically, it is shown that VCG is well replicated when the oligomers are elongated by sufficiently short chains from "feedstock" pool. However, ligation of oligomers from VCG itself results in a high error rate. I believe the research is of high quality and well written. However, the presentation could be improved and the key …
Reviewer #1 (Public review):
Summary:
This is an interesting theoretical study examining the viability of Virtual Circular Genome (VCG) model, a recently proposed scenario of prebiotic replication in which a relatively long sequence is stored as a collection of its shorter subsequences (and their compliments). It was previously pointed out that VCG model is prone to so-called sequence scrambling which limits the overall length of such a genome. In the present paper, additional limitations are identified. Specifically, it is shown that VCG is well replicated when the oligomers are elongated by sufficiently short chains from "feedstock" pool. However, ligation of oligomers from VCG itself results in a high error rate. I believe the research is of high quality and well written. However, the presentation could be improved and the key messages could be clarified.
(1) It is not clear from the paper whether the observed error has the same nature as sequence scrambling
(2) The authors introduce two important lengths LS1 and LS2 only in the conclusions and do not explain enough which each of them is important. It would make sense to discuss this early in the manuscript.
(3) It is not entirely clear why specific length distribution for VCG oligomers has to be assumed rather than emerged from simulations.
(4) Furthermore, the problem has another important length, L0 that is never introduced or discussed: a minimal hybridization length with a lifetime longer than the ligation time. From the parameters given, it appears that L0 is sufficiently long (~10 bases). In other words, it appears that the study is done is a somewhat suboptimal regime: most hybridization events do not lead to a ligation. Am I right in this assessment? If that is the case, the authors might want to explore another regime, L0
Strengths:High-quality theoretical modeling of an important problem is implemented.
Weaknesses:
The conclusions are somewhat convoluted and could be presented better.
-
Reviewer #2 (Public review):
Summary:
This important theoretical and computational study by Burger and Gerland attempts to set environmental, compositional, kinetic, and thermodynamic constraints on the proposed virtual circular genome (VCG) model for the early non-enzymatic replication of RNA. The authors create a solid kinetic model using published kinetic and thermodynamic parameters for non-enzymatic RNA ligation and (de)hybridization, which allows them to test a variety of hypotheses about the VCG. Prominently, the authors find that the length (longer is better) and concentration (intermediate is better) of the VCG oligos have an outsized impact on the fidelity and yield of VCG production with important implications for future VCG design. They also identify that activation of only RNA monomers, which can be achieved using …
Reviewer #2 (Public review):
Summary:
This important theoretical and computational study by Burger and Gerland attempts to set environmental, compositional, kinetic, and thermodynamic constraints on the proposed virtual circular genome (VCG) model for the early non-enzymatic replication of RNA. The authors create a solid kinetic model using published kinetic and thermodynamic parameters for non-enzymatic RNA ligation and (de)hybridization, which allows them to test a variety of hypotheses about the VCG. Prominently, the authors find that the length (longer is better) and concentration (intermediate is better) of the VCG oligos have an outsized impact on the fidelity and yield of VCG production with important implications for future VCG design. They also identify that activation of only RNA monomers, which can be achieved using environmental separation of the activation and replication, can relax the constraints on the concentration of long VCG component oligos by avoiding the error-prone oligo-oligo ligation. Finally, in a complex scenario with multiple VCG oligo lengths, the authors demonstrate a clear bias for the extension of shorter oligos compared to the longer ones. This effect has been observed experimentally (Ding et al., JACS 2023) but was unexplained rigorously until now. Overall, this manuscript will be of interest to scientists studying the origin of life and the behavior of complex nucleic acid systems.
Strengths:
- The kinetic model is carefully and realistically created, enabling the authors to probe the VCG thoroughly.
- Fig. 6 outlines important constraints for scientists studying the origin of life. It supports the claim that the separation of activation and replication chemistry is required for efficient non-enzymatic replication. One could easily imagine a scenario where activation of molecules occurs, followed by their diffusion into another environment containing protocells that encapsulate a VCG. The selective diffusion of activated monomers across protocell membranes would then result in only activated monomers being available to the VCG, which is the constraint outlined in this work. The proposed exclusive replication by monomers also mirrors the modern biological systems, which nearly exclusively replicate by monomer extension.
- Another strength of the work is that it explains why shorter oligos extend better compared to the long ones in complex VCG mixtures. This point is independent of the activation chemistry used (it simply depends on the kinetics and thermodynamics of RNA base-pairing) so it should be very generalizable.Weaknesses:
- Most of the experimental work on the VCG has been performed with the bridged 2-aminoimidazolium dinucleotides, which are not featured in the kinetic model of this work. Oher studies by Szostak and colleagues have demonstrated that non-enzymatic RNA extension with bridged dinucleotides have superior kinetics (Walton et al. JACS 2016, Li et al. JACS 2017), fidelity (Duzdevich et al. NAR 2021), and regioselectivity (Giurgiu et al. JACS 2017) compared to activated monomers, establishing the bridged dinucleotides as important for non-enzymatic RNA replication. Therefore, the omission of these species in the kinetic model presented here can be perceived as problematic. The major claim that avoidance of oligo ligations is beneficial for VCGs may be irrelevant if bridged dinucleotides are used as the extending species, because oligo ligations (V + V in this work) are kinetically orders of magnitude slower than monomer extensions (F + V in this work) (Ding et al. NAR 2022). Formally adding the bridged dinucleotides to the kinetic model is likely outside of the scope of this work, but perhaps the authors could test if this should be done in the future by simply increasing the rate of monomer extension (F + V) to match the bridged dinucleotide rate without changing rate of V + V ligation?
- The kinetic and thermodynamic parameters for oligo binding appear to be missing two potentially important components. First, base-paired RNA strands that contain gaps where an activated monomer or oligo can bind have been shown to display significantly different kinetics of ligation and binding/unbinding than complexes that do not contain such gaps (see Prywes et al. eLife 2016, Banerjee et al. Nature Nanotechnology 2023, and Todisco et al. JACS 2024). Would inclusion of such parameters alter the overall kinetic model? Second, it has been shown that long base-paired RNA can tolerate mismatches to an extent that can result in monomer ligation to such mismatched duplexes (see Todisco et al. NAR 2024). Would inclusion of the parameters published in Todisco et al. NAR 2024 alter the kinetic model significantly? -
-