Three components of glucose dynamics – value, variability, and autocorrelation – are independently associated with coronary plaque vulnerability
Curation statements for this article:-
Curated by eLife
eLife Assessment
This valuable retrospective analysis identified three independent components of glucose dynamics - "value," "variability," and "autocorrelation" - which may be used in predicting coronary plaque vulnerability. The study is solid and of interest to a wide range of investigators in the medical field who are interested in the role of glycemia on cardiometabolic health. However, the generalizability of the results needs further confirmation through experimental and prospective validation.
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (eLife)
Abstract
Impaired glucose homeostasis leads to numerous complications, with coronary artery disease (CAD) being a major contributor to healthcare costs worldwide. Given the limited efficacy of current CAD screening methods, we investigated the association between glucose dynamics and a predictor of coronary events measured by virtual histology-intravascular ultrasound (%NC), with the aim of predicting CAD using easy-to-measure indices. We found that continuous glucose monitoring (CGM)-derived indices, particularly average daily risk ratio (ADRR) and AC_Var, exhibited stronger predictive capabilities for %NC compared to commonly used indices such as fasting blood glucose (FBG), hemoglobin A1C (HbA1c), and plasma glucose level at 120 min during oral glucose tolerance tests (PG120). Factor analysis identified three distinct components underlying glucose dynamics – value, variability, and autocorrelation – each independently associated with %NC. ADRR was influenced by the first two components and AC_Var by the third. FBG, HbA1c, and PG120 were influenced only by the value component, making them insufficient for %NC prediction. Our results were validated using data sets from Japan (n=64), America (n=53), and China (n=100). CGM-derived indices reflecting the three components of glucose dynamics can serve as more effective screening tools for CAD risk assessment, complementing or possibly replacing traditional diabetes diagnostic methods.
Article activity feed
-
eLife Assessment
This valuable retrospective analysis identified three independent components of glucose dynamics - "value," "variability," and "autocorrelation" - which may be used in predicting coronary plaque vulnerability. The study is solid and of interest to a wide range of investigators in the medical field who are interested in the role of glycemia on cardiometabolic health. However, the generalizability of the results needs further confirmation through experimental and prospective validation.
-
Reviewer #1 (Public review):
Summary:
This study identified three independent components of glucose dynamics-"value," "variability," and "autocorrelation", and reported important findings indicating that they play an important role in predicting coronary plaque vulnerability. Although the generalizability of the results needs further investigation due to the limited sample size and validation cohort limitations, this study makes several notable contributions: validation of autocorrelation as a new clinical indicator, theoretical support through mathematical modeling, and development of a web application for practical implementation. These contributions are likely to attract broad interest from researchers in both diabetology and cardiology and may suggest the potential for a new approach to glucose monitoring that goes beyond …
Reviewer #1 (Public review):
Summary:
This study identified three independent components of glucose dynamics-"value," "variability," and "autocorrelation", and reported important findings indicating that they play an important role in predicting coronary plaque vulnerability. Although the generalizability of the results needs further investigation due to the limited sample size and validation cohort limitations, this study makes several notable contributions: validation of autocorrelation as a new clinical indicator, theoretical support through mathematical modeling, and development of a web application for practical implementation. These contributions are likely to attract broad interest from researchers in both diabetology and cardiology and may suggest the potential for a new approach to glucose monitoring that goes beyond conventional glycemic control indicators in clinical practice.
Strengths:
The most notable strength of this study is the identification of three independent elements in glycemic dynamics: value, variability, and autocorrelation. In particular, the metric of autocorrelation, which has not been captured by conventional glycemic control indices, may bring a new perspective for understanding glycemic dynamics. In terms of methodological aspects, the study uses an analytical approach combining various statistical methods such as factor analysis, LASSO, and PLS regression, and enhances the reliability of results through theoretical validation using mathematical models and validation in other cohorts. In addition, the practical aspect of the research results, such as the development of a Web application, is also an important contribution to clinical implementation.
Weaknesses:
The most significant weakness of this study is the relatively small sample size of 53 study subjects. This sample size limitation leads to a lack of statistical power, especially in subgroup analyses, and to limitations in the assessment of rare events. In terms of validation, several challenges exist, including geographical and ethnic biases in the validation cohorts, lack of long-term follow-up data, and insufficient validation across different clinical settings. In terms of data representativeness, limiting factors include the inclusion of only subjects with well-controlled serum cholesterol and blood pressure and the use of only short-term measurement data. In terms of elucidation of physical mechanisms, the study is not sufficient to elucidate the mechanisms linking autocorrelation and clinical outcomes or to verify them at the cellular or molecular level.
-
Reviewer #2 (Public review):
Summary:
Sugimoto et al. explore the relationship between glucose dynamics - specifically value, variability, and autocorrelation - and coronary plaque vulnerability in patients with varying glucose tolerance levels. The study identifies three independent predictive factors for %NC and emphasizes the use of continuous glucose monitoring (CGM)-derived indices for coronary artery disease (CAD) risk assessment. By employing robust statistical methods and validating findings across datasets from Japan, America, and China, the authors highlight the limitations of conventional markers while proposing CGM as a novel approach for risk prediction. The study has the potential to reshape CAD risk assessment by emphasizing CGM-derived indices, aligning well with personalized medicine trends.
Strengths:
(1) The …
Reviewer #2 (Public review):
Summary:
Sugimoto et al. explore the relationship between glucose dynamics - specifically value, variability, and autocorrelation - and coronary plaque vulnerability in patients with varying glucose tolerance levels. The study identifies three independent predictive factors for %NC and emphasizes the use of continuous glucose monitoring (CGM)-derived indices for coronary artery disease (CAD) risk assessment. By employing robust statistical methods and validating findings across datasets from Japan, America, and China, the authors highlight the limitations of conventional markers while proposing CGM as a novel approach for risk prediction. The study has the potential to reshape CAD risk assessment by emphasizing CGM-derived indices, aligning well with personalized medicine trends.
Strengths:
(1) The introduction of autocorrelation as a predictive factor for plaque vulnerability adds a novel dimension to glucose dynamic analysis.
(2) Inclusion of datasets from diverse regions enhances generalizability.
(3) The use of a well-characterized cohort with controlled cholesterol and blood pressure levels strengthens the findings.
(4) The focus on CGM-derived indices aligns with personalized medicine trends, showcasing the potential for CAD risk stratification.
Weaknesses:
(1) The link between autocorrelation and plaque vulnerability remains speculative without a proposed biological explanation.
(2) The relatively small sample size (n=270) limits statistical power, especially when stratified by glucose tolerance levels.
(3) Strict participant selection criteria may reduce applicability to broader populations.
(4) CGM-derived indices like AC_Var and ADRR may be too complex for routine clinical use without simplified models or guidelines.
(5) The study does not compare CGM-derived indices to existing advanced CAD risk models, limiting the ability to assess their true predictive superiority.
(6) Varying CGM sampling intervals (5-minute vs. 15-minute) were not thoroughly analyzed for impact on results.
-
Reviewer #3 (Public review):
Summary:
This is a retrospective analysis of 53 individuals over 26 features (12 clinical phenotypes, 12 CGM features, and 2 autocorrelation features) to examine which features were most informative in predicting percent necrotic core (%NC) as a parameter for coronary plaque vulnerability. Multiple regression analysis demonstrated a better ability to predict %NC from 3 selected CGM-derived features than 3 selected clinical phenotypes. LASSO regularization and partial least squares (PLS) with VIP scores were used to identify 4 CGM features that most contribute to the precision of %NC. Using factor analysis they identify 3 components that have CGM-related features: value (relating to the value of blood glucose), variability (relating to glucose variability), and autocorrelation (composed of the two …
Reviewer #3 (Public review):
Summary:
This is a retrospective analysis of 53 individuals over 26 features (12 clinical phenotypes, 12 CGM features, and 2 autocorrelation features) to examine which features were most informative in predicting percent necrotic core (%NC) as a parameter for coronary plaque vulnerability. Multiple regression analysis demonstrated a better ability to predict %NC from 3 selected CGM-derived features than 3 selected clinical phenotypes. LASSO regularization and partial least squares (PLS) with VIP scores were used to identify 4 CGM features that most contribute to the precision of %NC. Using factor analysis they identify 3 components that have CGM-related features: value (relating to the value of blood glucose), variability (relating to glucose variability), and autocorrelation (composed of the two autocorrelation features). These three groupings appeared in the 3 validation cohorts and when performing hierarchical clustering. To demonstrate how these three features change, a simulation was created to allow the user to examine these features under different conditions.
Review:
The goal of this study was to identify CGM features that relate to %NC. Through multiple feature selection methods, they arrive at 3 components: value, variability, and autocorrelation. While the feature list is highly correlated, the authors take steps to ensure feature selection is robust. There is a lack of clarity of what each component (value, variability, and autocorrelation) includes as while similar CGM indices fall within each component, there appear to be some indices that appear as relevant to value in one dataset and to variability in the validation. We are sceptical about statements of significance without documentation of p-values. While hesitations remain, the ability of these authors to find groupings of these many CGM metrics in relation to %NC is of interest. The believability of the associations is impeded by an obtuse presentation of the results with core data (i.e. correlation plots between CGM metrics and %NC) buried in the supplement while main figures contain plots of numerical estimates from models which would be more usefully presented in supplementary tables. Given the small sample size in the primary analysis, there is a lot of modeling done with parameters estimated where simpler measures would serve and be more convincing as they require less data manipulation. A major example of this is that the pairwise correlation/covariance between CGM_mean, CGM_std, and AC_var is not shown and would be much more compelling in the claim that these are independent factors. Lack of methodological detail is another challenge. For example, the time period of CGM metrics or CGM placement in the primary study in relation to the IVUS-derived measurements of coronary plaques is unclear. Are they temporally distant or proximal/ concurrent with the PCI? A patient undergoing PCI for coronary intervention would be expected to have physiological and iatrogenic glycemic disturbances that do not reflect their baseline state. This is not considered or discussed. The attempts at validation in external cohorts, Japanese, American, and Chinese are very poorly detailed. We could only find even an attempt to examine cardiovascular parameters in the Chinese data set but the outcome variables are unspecified with regard to what macrovascular events are included, their temporal relation to the CGM metrics, etc. Notably macrovascular event diagnoses are very different from the coronary plaque necrosis quantification. This could be a source of strength in the findings if carefully investigated and detailed but due to the lack of detail seems like an apples-to-oranges comparison. Finally, the simulations at the end are not relevant to the main claims of the paper and we would recommend removing them for the coherence of this manuscript.
-
Author response:
Reviewer #1 (Public review):
Summary:
This study identified three independent components of glucose dynamics-"value," "variability," and "autocorrelation", and reported important findings indicating that they play an important role in predicting coronary plaque vulnerability. Although the generalizability of the results needs further investigation due to the limited sample size and validation cohort limitations, this study makes several notable contributions: validation of autocorrelation as a new clinical indicator, theoretical support through mathematical modeling, and development of a web application for practical implementation. These contributions are likely to attract broad interest from researchers in both diabetology and cardiology and may suggest the potential for a new approach to glucose monitoring that …
Author response:
Reviewer #1 (Public review):
Summary:
This study identified three independent components of glucose dynamics-"value," "variability," and "autocorrelation", and reported important findings indicating that they play an important role in predicting coronary plaque vulnerability. Although the generalizability of the results needs further investigation due to the limited sample size and validation cohort limitations, this study makes several notable contributions: validation of autocorrelation as a new clinical indicator, theoretical support through mathematical modeling, and development of a web application for practical implementation. These contributions are likely to attract broad interest from researchers in both diabetology and cardiology and may suggest the potential for a new approach to glucose monitoring that goes beyond conventional glycemic control indicators in clinical practice.
Strengths:
The most notable strength of this study is the identification of three independent elements in glycemic dynamics: value, variability, and autocorrelation. In particular, the metric of autocorrelation, which has not been captured by conventional glycemic control indices, may bring a new perspective for understanding glycemic dynamics. In terms of methodological aspects, the study uses an analytical approach combining various statistical methods such as factor analysis, LASSO, and PLS regression, and enhances the reliability of results through theoretical validation using mathematical models and validation in other cohorts. In addition, the practical aspect of the research results, such as the development of a Web application, is also an important contribution to clinical implementation.
We appreciate reviewer #1 for the positive assessment and for the valuable and constructive comments on our manuscript.
Weaknesses:
The most significant weakness of this study is the relatively small sample size of 53 study subjects. This sample size limitation leads to a lack of statistical power, especially in subgroup analyses, and to limitations in the assessment of rare events.
We appreciate the reviewer’s concern regarding the sample size. We acknowledge that a larger sample size would increase statistical power, especially for subgroup analyses and the assessment of rare events.
We would like to clarify several points regarding the statistical power and validation of our findings. Our sample size determination followed established methodological frameworks, including the guidelines outlined by Muyembe Asenahabi, Bostely, and Peters Anselemo Ikoha. “Scientific research sample size determination.” (2023). These guidelines balance the risks of inadequate sample size with the challenges of unnecessarily large samples. For our primary analysis examining the correlation between CGM-derived measures and %NC, power calculations (a type I error of 0.05, a power of 0.8, and an expected correlation coefficient of 0.4) indicated that a minimum of 47 participants was required. Our sample size of 53 exceeded this threshold and allowed us to detect statistically significant correlations, as described in the Methods section. Moreover, to provide transparency about the precision of our estimates, we have included confidence intervals for all coefficients.
Furthermore, our sample size aligns with previous studies investigating the associations between glucose profiles and clinical parameters, including Torimoto, Keiichi, et al. “Relationship between fluctuations in glucose levels measured by continuous glucose monitoring and vascular endothelial dysfunction in type 2 diabetes mellitus.” Cardiovascular Diabetology 12 (2013): 1-7. (n=57), Hall, Heather, et al. “Glucotypes reveal new patterns of glucose dysregulation.” PLoS biology 16.7 (2018): e2005143. (n=57), and Metwally, Ahmed A., et al. “Prediction of metabolic subphenotypes of type 2 diabetes via continuous glucose monitoring and machine learning.” Nature Biomedical Engineering (2024): 1-18. (n=32).
Furthermore, the primary objective of our study was not to assess rare events, but rather to demonstrate that glucose dynamics can be decomposed into three main factors - mean, variance and autocorrelation - whereas traditional measures have primarily captured mean and variance without adequately reflecting autocorrelation. We believe that our current sample size effectively addresses this objective.
Regarding the classification of glucose dynamics components, we have conducted additional validation across diverse populations including 64 Japanese, 53 American, and 100 Chinese individuals. These validation efforts have consistently supported our identification of three independent glucose dynamics components.
However, we acknowledge the importance of further validation on a larger scale. To address this, we conducted a large follow-up study of over 8,000 individuals (Sugimoto, Hikaru, et al. “Stratification of individuals without prior diagnosis of diabetes using continuous glucose monitoring” medRxiv (2025)), which confirmed our main finding that glucose dynamics consist of mean, variance, and autocorrelation. As this large study was beyond the scope of the present manuscript due to differences in primary objectives and analytical approaches, it was not included in this paper; however, it provides further support for the clinical relevance and generalizability of our findings.
To address the sample size considerations, we will add the following sentences in the Discussion section:
Although our analysis included four datasets with a total of 270 individuals, and our sample size of 53 met the required threshold based on power calculations with a type I error of 0.05, a power of 0.8, and an expected correlation coefficient of 0.4, we acknowledge that the sample size may still be considered relatively small for a comprehensive assessment of these relationships. To further validate these findings, larger prospective studies with diverse populations are needed to improve the predictive utility and generalizability of our findings.
We appreciate the reviewer’s feedback and believe that these clarifications will strengthen the manuscript.
In terms of validation, several challenges exist, including geographical and ethnic biases in the validation cohorts, lack of long-term follow-up data, and insufficient validation across different clinical settings. In terms of data representativeness, limiting factors include the inclusion of only subjects with well-controlled serum cholesterol and blood pressure and the use of only short-term measurement data.
We appreciate the reviewer’s comment regarding the challenges associated with validation. In terms of geographic and ethnic diversity, our study includes validation cohorts from diverse populations, including 64 Japanese, 53 American and 100 Chinese individuals. These cohorts include a wide range of metabolic states, from healthy individuals to those with diabetes, ensuring validation across different clinical conditions. In addition, we recognize the limited availability of publicly available datasets with sufficient sample sizes for factor decomposition that include both healthy individuals and those with type 2 diabetes (Zhao, Qinpei, et al. “Chinese diabetes datasets for data-driven machine learning.” Scientific Data 10.1 (2023): 35.). The main publicly available datasets with relevant clinical characteristics have already been analyzed in this study using unbiased approaches.
However, we fully agree with the reviewer that expanding the geographic and ethnic scope, including long-term follow-up data, and validation in different clinical settings would further strengthen the robustness and generalizability of our findings. To address this, we conducted a large follow-up study of over 8,000 individuals with two years of follow-up (Sugimoto, Hikaru, et al. “Stratification of individuals without prior diagnosis of diabetes using continuous glucose monitoring” medRxiv (2025)), which confirmed our main finding that glucose dynamics consist of mean, variance, and autocorrelation. As this large study was beyond the scope of the present manuscript due to differences in primary objectives and analytical approaches, it was not included in this paper; however, it provides further support for the clinical relevance and generalizability of our findings.
Regarding the validation considerations, we will add the following sentences to the Discussion section:
Although our analysis included four datasets with a total of 270 individuals, and our sample size of 53 met the required threshold based on power calculations with a type I error of 0.05, a power of 0.8, and an expected correlation coefficient of 0.4, we acknowledge that the sample size may still be considered relatively small for a comprehensive assessment of these relationships. To further validate these findings, larger prospective studies with diverse populations are needed to improve the predictive utility and generalizability of our findings.
Although our LASSO and factor analysis indicated that CGM-derived measures were strong predictors of %NC, this does not mean that other clinical parameters, such as lipids and blood pressure, are irrelevant in T2DM complications. Our study specifically focused on characterizing glucose dynamics, and we analyzed individuals with well-controlled serum cholesterol and blood pressure to reduce confounding effects. While we anticipate that inclusion of a more diverse population would not alter our primary findings regarding glucose dynamics, it is likely that a broader data set would reveal additional predictive contributions from lipid and blood pressure parameters.
In terms of elucidation of physical mechanisms, the study is not sufficient to elucidate the mechanisms linking autocorrelation and clinical outcomes or to verify them at the cellular or molecular level.
We appreciate the reviewer’s point regarding the need for further elucidation of the physical mechanisms linking glucose autocorrelation to clinical outcomes. We fully agree with the reviewer that the detailed molecular and cellular mechanisms underlying this relationship are not yet fully understood, as noted in our Discussion section.
However, we would like to emphasize the theoretical basis that supports the clinical relevance of autocorrelation. Our results show that glucose profiles with identical mean and variability can exhibit different autocorrelation patterns, highlighting that conventional measures such as mean or variance alone may not fully capture inter-individual metabolic differences. Incorporating autocorrelation analysis provides a more comprehensive characterization of metabolic states. Consequently, incorporating autocorrelation measures alongside traditional diabetes diagnostic criteria - such as fasting glucose, HbA1c and PG120, which primarily reflect only the “mean” component - can improve predictive accuracy for various clinical outcomes. While further research at the cellular and molecular level is needed to fully validate these findings, it is important to note that the primary goal of this study was to analyze the characteristics of glucose dynamics and gain new insights into metabolism, rather than to perform molecular biology experiments.
Furthermore, our previous research has shown that glucose autocorrelation reflects changes in insulin clearance (Sugimoto, Hikaru, et al. “Improved Detection of Decreased Glucose Handling Capacities via Novel Continuous Glucose Monitoring-Derived Indices: AC_Mean and AC_Var.” medRxiv (2023): 2023-09.). The relationship between insulin clearance and cardiovascular disease has been well documented (Randrianarisoa, Elko, et al. “Reduced insulin clearance is linked to subclinical atherosclerosis in individuals at risk for type 2 diabetes mellitus.” Scientific reports 10.1 (2020): 22453.), and the mechanisms described in this prior work may potentially explain the association between glucose autocorrelation and clinical outcomes observed in the present study.
Rather than a limitation, we view these currently unexplored associations as an opportunity for further research. The identification of autocorrelation as a key glycemic feature introduces a new dimension to metabolic regulation that could serve as the basis for future investigations exploring the molecular mechanisms underlying these patterns.
While we agree that further research at the cellular and molecular level is needed to fully validate these findings, we believe that our study provides a strong theoretical framework to support the clinical utility of autocorrelation analysis in glucose monitoring, and that this could serve as the basis for future investigations exploring the molecular mechanisms underlying these autocorrelation patterns, which adds to the broad interest of this study. Regarding the physical mechanisms linking autocorrelation and clinical outcomes, we will add the following sentences in the Discussion section:
This study also provided evidence that autocorrelation can vary independently from the mean and variance components using simulated data. In addition, simulated glucose dynamics indicated that even individuals with high AC_Var did not necessarily have high maximum and minimum blood glucose levels. This study also indicated that these three components qualitatively corresponded to the four distinct glucose patterns observed after glucose administration, which were identified in a previous study (Hulman et al., 2018). Thus, the inclusion of autocorrelation in addition to mean and variance may improve the characterization of inter-individual differences in glucose regulation and improve the predictive accuracy of various clinical outcomes.
Despite increasing evidence linking glycemic variability to oxidative stress and endothelial dysfunction in T2DM complications (Ceriello et al., 2008; Monnier et al., 2008), the biological mechanisms underlying the independent predictive value of autocorrelation remain to be elucidated. Our previous work has shown that glucose autocorrelation is influenced by insulin clearance (Sugimoto et al., 2023), a process known to be associated with cardiovascular disease risk (Randrianarisoa et al., 2020). Therefore, the molecular pathways linking glucose autocorrelation to cardiovascular disease may share common mechanisms with those linking insulin clearance to cardiovascular disease. Although previous studies have primarily focused on investigating the molecular mechanisms associated with mean glucose levels and glycemic variability, our findings open new avenues for exploring the molecular basis of glucose autocorrelation, potentially revealing novel therapeutic targets for preventing diabetic complications.
Reviewer #2 (Public review):
Sugimoto et al. explore the relationship between glucose dynamics - specifically value, variability, and autocorrelation - and coronary plaque vulnerability in patients with varying glucose tolerance levels. The study identifies three independent predictive factors for %NC and emphasizes the use of continuous glucose monitoring (CGM)-derived indices for coronary artery disease (CAD) risk assessment. By employing robust statistical methods and validating findings across datasets from Japan, America, and China, the authors highlight the limitations of conventional markers while proposing CGM as a novel approach for risk prediction. The study has the potential to reshape CAD risk assessment by emphasizing CGM-derived indices, aligning well with personalized medicine trends.
Strengths:
(1) The introduction of autocorrelation as a predictive factor for plaque vulnerability adds a novel dimension to glucose dynamic analysis.
(2) Inclusion of datasets from diverse regions enhances generalizability.
(3) The use of a well-characterized cohort with controlled cholesterol and blood pressure levels strengthens the findings.
(4) The focus on CGM-derived indices aligns with personalized medicine trends, showcasing the potential for CAD risk stratification.
We appreciate reviewer #2 for the positive assessment and for the valuable and constructive comments on our manuscript.
Weaknesses:
(1) The link between autocorrelation and plaque vulnerability remains speculative without a proposed biological explanation.
We appreciate the reviewer’s point about the need for a clearer biological explanation linking glucose autocorrelation to plaque vulnerability. We fully agree with the reviewer that the detailed biological mechanisms underlying this relationship are not yet fully understood, as noted in our Discussion section.
However, we would like to emphasize the theoretical basis that supports the clinical relevance of autocorrelation. Our results show that glucose profiles with identical mean and variability can exhibit different autocorrelation patterns, highlighting that conventional measures such as mean or variance alone may not fully capture inter-individual metabolic differences. Incorporating autocorrelation analysis provides a more comprehensive characterization of metabolic states. Consequently, incorporating autocorrelation measures alongside traditional diabetes diagnostic criteria - such as fasting glucose, HbA1c and PG120, which primarily reflect only the “mean” component - can improve predictive accuracy for various clinical outcomes.
Furthermore, our previous research has shown that glucose autocorrelation reflects changes in insulin clearance (Sugimoto, Hikaru, et al. “Improved Detection of Decreased Glucose Handling Capacities via Novel Continuous Glucose Monitoring-Derived Indices: AC_Mean and AC_Var.” medRxiv (2023): 2023-09.). The relationship between insulin clearance and cardiovascular disease has been well documented (Randrianarisoa, Elko, et al. “Reduced insulin clearance is linked to subclinical atherosclerosis in individuals at risk for type 2 diabetes mellitus.” Scientific reports 10.1 (2020): 22453.), and the mechanisms described in this prior work may potentially explain the association between glucose autocorrelation and clinical outcomes observed in the present study.
Rather than a limitation, we view these currently unexplored associations as an opportunity for further research. The identification of autocorrelation as a key glycemic feature introduces a new dimension to metabolic regulation that could serve as the basis for future investigations exploring the molecular mechanisms underlying these patterns.
While we agree that further research at the cellular and molecular level is needed to fully validate these findings, we believe that our study provides a strong theoretical framework to support the clinical utility of autocorrelation analysis in glucose monitoring, and that this could serve as the basis for future investigations exploring the molecular mechanisms underlying these autocorrelation patterns, which adds to the broad interest of this study. Regarding the physical mechanisms linking autocorrelation and clinical outcomes, we will add the following sentences in the Discussion section:
This study also provided evidence that autocorrelation can vary independently from the mean and variance components using simulated data. In addition, simulated glucose dynamics indicated that even individuals with high AC_Var did not necessarily have high maximum and minimum blood glucose levels. This study also indicated that these three components qualitatively corresponded to the four distinct glucose patterns observed after glucose administration, which were identified in a previous study (Hulman et al., 2018). Thus, the inclusion of autocorrelation in addition to mean and variance may improve the characterization of inter-individual differences in glucose regulation and improve the predictive accuracy of various clinical outcomes.
Despite increasing evidence linking glycemic variability to oxidative stress and endothelial dysfunction in T2DM complications (Ceriello et al., 2008; Monnier et al., 2008), the biological mechanisms underlying the independent predictive value of autocorrelation remain to be elucidated. Our previous work has shown that glucose autocorrelation is influenced by insulin clearance (Sugimoto et al., 2023), a process known to be associated with cardiovascular disease risk (Randrianarisoa et al., 2020). Therefore, the molecular pathways linking glucose autocorrelation to cardiovascular disease may share common mechanisms with those linking insulin clearance to cardiovascular disease. Although previous studies have primarily focused on investigating the molecular mechanisms associated with mean glucose levels and glycemic variability, our findings open new avenues for exploring the molecular basis of glucose autocorrelation, potentially revealing novel therapeutic targets for preventing diabetic complications.
(2) The relatively small sample size (n=270) limits statistical power, especially when stratified by glucose tolerance levels.
We appreciate the reviewer’s concern regarding sample size and its potential impact on statistical power, especially when stratified by glucose tolerance level. We fully agree that a larger sample size would increase statistical power, especially for subgroup analyses.
We would like to clarify several points regarding the statistical power and validation of our findings. Our sample size determination followed established methodological frameworks, including the guidelines outlined by Muyembe Asenahabi, Bostely, and Peters Anselemo Ikoha. “Scientific research sample size determination.” (2023). These guidelines balance the risks of inadequate sample size with the challenges of unnecessarily large samples. For our primary analysis examining the correlation between CGM-derived measures and %NC, power calculations (a type I error of 0.05, a power of 0.8, and an expected correlation coefficient of 0.4) indicated that a minimum of 47 participants was required. Our sample size of 53 exceeded this threshold and allowed us to detect statistically significant correlations, as described in the Methods section. Moreover, to provide transparency about the precision of our estimates, we have included confidence intervals for all coefficients.
Furthermore, our sample size aligns with previous studies investigating the associations between glucose profiles and clinical parameters, including Torimoto, Keiichi, et al. “Relationship between fluctuations in glucose levels measured by continuous glucose monitoring and vascular endothelial dysfunction in type 2 diabetes mellitus.” Cardiovascular Diabetology 12 (2013): 1-7. (n=57), Hall, Heather, et al. “Glucotypes reveal new patterns of glucose dysregulation.” PLoS biology 16.7 (2018): e2005143. (n=57), and Metwally, Ahmed A., et al. “Prediction of metabolic subphenotypes of type 2 diabetes via continuous glucose monitoring and machine learning.” Nature Biomedical Engineering (2024): 1-18. (n=32).
Regarding the classification of glucose dynamics components, we have conducted additional validation across diverse populations including 64 Japanese, 53 American, and 100 Chinese individuals. These validation efforts have consistently supported our identification of three independent glucose dynamics components.
However, we acknowledge the importance of further validation on a larger scale. To address this, we conducted a large follow-up study of over 8,000 individuals with two years of follow-up (Sugimoto, Hikaru, et al. “Stratification of individuals without prior diagnosis of diabetes using continuous glucose monitoring” medRxiv (2025)), which confirmed our main finding that glucose dynamics consist of mean, variance, and autocorrelation. As this large study was beyond the scope of the present manuscript due to differences in primary objectives and analytical approaches, it was not included in this paper; however, it provides further support for the clinical relevance and generalizability of our findings.
To address the sample size considerations, we will add the following sentences in the Discussion section:
Although our analysis included four datasets with a total of 270 individuals, and our sample size of 53 met the required threshold based on power calculations with a type I error of 0.05, a power of 0.8, and an expected correlation coefficient of 0.4, we acknowledge that the sample size may still be considered relatively small for a comprehensive assessment of these relationships. To further validate these findings, larger prospective studies with diverse populations are needed to improve the predictive utility and generalizability of our findings.
(3) Strict participant selection criteria may reduce applicability to broader populations.
We appreciate the reviewer’s comment regarding the potential impact of strict participant selection criteria on the broader applicability of our findings. We acknowledge that extending validation to more diverse populations would improve the generalizability of our findings.
Our study includes validation cohorts from diverse populations, including 64 Japanese, 53 American and 100 Chinese individuals. These cohorts include a wide range of metabolic states, from healthy individuals to those with diabetes, ensuring validation across different clinical conditions. However, we acknowledge that further validation in additional populations and clinical settings would strengthen our conclusions. To address this, we conducted a large follow-up study of over 8,000 individuals (Sugimoto, Hikaru, et al. “Stratification of individuals without prior diagnosis of diabetes using continuous glucose monitoring” medRxiv (2025)), which confirmed our main finding that glucose dynamics consist of mean, variance, and autocorrelation. As this large study was beyond the scope of the present manuscript due to differences in primary objectives and analytical approaches, it was not included in this paper; however, it provides further support for the clinical relevance and generalizability of our findings.
We will add the following text to the Discussion section to address these considerations:
Although our analysis included four datasets with a total of 270 individuals, and our sample size of 53 met the required threshold based on power calculations with a type I error of 0.05, a power of 0.8, and an expected correlation coefficient of 0.4, we acknowledge that the sample size may still be considered relatively small for a comprehensive assessment of these relationships. To further validate these findings, larger prospective studies with diverse populations are needed to improve the predictive utility and generalizability of our findings.
Although our LASSO and factor analysis indicated that CGM-derived measures were strong predictors of %NC, this does not mean that other clinical parameters, such as lipids and blood pressure, are irrelevant in T2DM complications. Our study specifically focused on characterizing glucose dynamics, and we analyzed individuals with well-controlled serum cholesterol and blood pressure to reduce confounding effects. While we anticipate that inclusion of a more diverse population would not alter our primary findings regarding glucose dynamics, it is likely that a broader data set would reveal additional predictive contributions from lipid and blood pressure parameters.
(4) CGM-derived indices like AC_Var and ADRR may be too complex for routine clinical use without simplified models or guidelines.
We appreciate the reviewer’s concern about the complexity of CGM-derived indices such as AC_Var and ADRR for routine clinical use. We acknowledge that for these indices to be of practical use, they must be both interpretable and easily accessible to healthcare providers.
To address this concern, we have developed an easy-to-use web application that automatically calculates these measures, including AC_Var, mean glucose levels, and glucose variability. This tool eliminates the need for manual calculations, making these indices more practical for clinical implementation.
Regarding interpretability, we acknowledge that establishing specific clinical guidelines would enhance the practical utility of these measures. For example, defining a cut-off value for AC_Var above which the risk of diabetes complications increases significantly would provide clearer clinical guidance. However, given our current sample size limitations and our predefined objective of investigating correlations among indices, we have taken a conservative approach by focusing on the correlation between AC_Var and %NC rather than establishing definitive cutoffs. This approach intentionally avoids problematic statistical practices like p-hacking. It is not realistic to expect a single study to accomplish everything from proposing a new concept to conducting large-scale clinical trials to establishing clinical guidelines. Establishing clinical guidelines typically requires the accumulation of multiple studies over many years. Recognizing this reality, we have been careful in our manuscript to make modest claims about the discovery of new “correlations” rather than exaggerated claims about immediate routine clinical use.
To address this limitation, we conducted a large follow-up study of over 8,000 individuals in the next study (Sugimoto, Hikaru, et al. “Stratification of individuals without prior diagnosis of diabetes using continuous glucose monitoring” medRxiv (2025)), which proposed clinically relevant cutoffs and reference ranges for AC_Var and other CGM-derived indices. As this large study was beyond the scope of the present manuscript due to differences in primary objectives and analytical approaches, it was not included in this paper; however, by integrating automated calculation tools with clear clinical thresholds, we expect to make these measures more accessible for clinical use.
We will add the following text to the Discussion section to address these considerations:
While CGM-derived indices such as AC_Var and ADRR hold promise for CAD risk assessment, their complexity may present challenges for routine clinical implementation. To improve usability, we have developed a web-based calculator that automates these calculations. However, the definition of clinically relevant thresholds and reference ranges requires further validation in larger cohorts.
(5) The study does not compare CGM-derived indices to existing advanced CAD risk models, limiting the ability to assess their true predictive superiority.
We appreciate the reviewer’s comment regarding the comparison of CGM-derived indices with existing CAD risk models. Given that our study population consisted of individuals with well-controlled total cholesterol and blood pressure levels, a direct comparison with the Framingham Risk Score for Hard Coronary Heart Disease (Wilson, Peter WF, et al. “Prediction of coronary heart disease using risk factor categories.” Circulation 97.18 (1998): 1837-1847.) may introduce inherent bias, as these factors are key components of the score.
Nevertheless, to further assess the predictive value of the CGM-derived indices, we performed additional analyses using linear regression to predict %NC. Using the Framingham Risk Score, we obtained an R² of 0.04 and an Akaike Information Criterion (AIC) of 330. In contrast, our proposed model incorporating the three glycemic parameters - CGM_Mean, CGM_Std, and AC_Var - achieved a significantly improved R² of 0.36 and a lower AIC of 321, indicating superior predictive accuracy.
We will add the following text to the Result section:
The regression model including CGM_Mean, CGM_Std and AC_Var to predict %NC achieved an R² of 0.36 and an Akaike Information Criterion (AIC) of 321. Each of these indices showed statistically significant independent positive correlations with %NC. In contrast, the model using conventional glycemic markers (FBG, HbA1c, and PG120) yielded an R2 of only 0.05 and an AIC of 340. Similarly, the model using the Framingham Risk Score for Hard Coronary Heart Disease (Wilson et al., 1998) showed limited predictive value, with an R2 of 0.04 and an AIC of 330.
(6) Varying CGM sampling intervals (5-minute vs. 15-minute) were not thoroughly analyzed for impact on results.
We appreciate the reviewer’s comment regarding the potential impact of different CGM sampling intervals on our results. To assess the robustness of our findings across different sampling frequencies, we performed a down sampling analysis by converting our 5-minute interval data to 15-minute intervals. The AC_Var value calculated from 15-minute intervals was significantly correlated with that calculated from 5-minute intervals (R = 0.99, 95% CI: 0.97-1.00). Furthermore, the regression model using CGM_Mean, CGM_Std, and AC_Var from 15-minute intervals to predict %NC achieved an R2 of 0.36 and an AIC of 321, identical to the model using 5-minute intervals. These results indicate that our results are robust to variations in CGM sampling frequency.
We will add this analysis to the Result section:
The AC_Var value calculated from 15-minute intervals was significantly correlated with that calculated from 5-minute intervals (R = 0.99, 95% CI: 0.97-1.00). Consequently, the regression model including CGM_Mean, CGM_Std and AC_Var from 15-minute intervals to predict %NC achieved an R² of 0.36 and an AIC of 321.
Reviewer #3 (Public review):
Summary:
This is a retrospective analysis of 53 individuals over 26 features (12 clinical phenotypes, 12 CGM features, and 2 autocorrelation features) to examine which features were most informative in predicting percent necrotic core (%NC) as a parameter for coronary plaque vulnerability. Multiple regression analysis demonstrated a better ability to predict %NC from 3 selected CGM-derived features than 3 selected clinical phenotypes. LASSO regularization and partial least squares (PLS) with VIP scores were used to identify 4 CGM features that most contribute to the precision of %NC. Using factor analysis they identify 3 components that have CGM-related features: value (relating to the value of blood glucose), variability (relating to glucose variability), and autocorrelation (composed of the two autocorrelation features). These three groupings appeared in the 3 validation cohorts and when performing hierarchical clustering. To demonstrate how these three features change, a simulation was created to allow the user to examine these features under different conditions.
We appreciate reviewer #3 for the valuable and constructive comments on our manuscript.
Review:
The goal of this study was to identify CGM features that relate to %NC. Through multiple feature selection methods, they arrive at 3 components: value, variability, and autocorrelation. While the feature list is highly correlated, the authors take steps to ensure feature selection is robust. There is a lack of clarity of what each component (value, variability, and autocorrelation) includes as while similar CGM indices fall within each component, there appear to be some indices that appear as relevant to value in one dataset and to variability in the validation.
We appreciate the reviewer’s comment regarding the classification of CGM-derived measures into the three components: value, variability, and autocorrelation. As the reviewer correctly points out, some measures may load differently between the value and variability components in different datasets. However, we believe that this variability reflects the inherent mathematical properties of these measures rather than a limitation of our study.
For example, the HBGI clusters differently across datasets due to its dependence on the number of glucose readings above a threshold. In populations where mean glucose levels are predominantly below this threshold, the HBGI is more sensitive to glucose variability (Fig. S7A). Conversely, in populations with a wider range of mean glucose levels, HBGI correlates more strongly with mean glucose levels (Fig. 3A). This context-dependent behavior is expected given the mathematical properties of these measures and does not indicate an inconsistency in our classification approach.
Importantly, our main findings remain robust: CGM-derived measures systematically fall into three components-value, variability, and autocorrelation. Traditional CGM-derived measures primarily reflect either value or variability, and this categorization is consistently observed across datasets. While specific indices such as HBGI may shift classification depending on population characteristics, the overall structure of CGM data remains stable.
To address these considerations, we will add the following text to the Discussion section:
Some indices, such as HBGI, showed variation in classification across datasets, with some populations showing higher factor loadings in the “value” component and others in the “variability” component. This variation occurs because HBGI calculations depend on the number of glucose readings above a threshold. In populations where mean glucose levels are predominantly below this threshold, the HBGI is more sensitive to glucose variability (Fig. S7A). Conversely, in populations with a wider range of mean glucose levels, the HBGI correlates more strongly with mean glucose levels (Fig. 3A). Despite these differences, our validation analyses confirm that CGM-derived indices consistently cluster into three components: value, variability, and autocorrelation.
We are sceptical about statements of significance without documentation of p-values.
We appreciate the reviewer’s concern regarding statistical significance and the documentation of p values.
First, given the multiple comparisons in our study, we used q values rather than p values, as shown in Figure S1. Q values provide a more rigorous statistical framework for controlling the false discovery rate in multiple testing scenarios, thereby reducing the likelihood of false positives.
Second, our statistical reporting follows established guidelines, including those of the New England Journal of Medicine (Harrington, David, et al. “New guidelines for statistical reporting in the journal.” New England Journal of Medicine 381.3 (2019): 285-286.), which recommend that “reporting of exploratory end points should be limited to point estimates of effects with 95% confidence intervals” and that “replace p values with estimates of effects or association and 95% confidence intervals”. According to these guidelines, p values should not be reported in this type of study. We determined significance based on whether these 95% confidence intervals excluded zero - a statistical method for determining whether an association is significantly different from zero (Tan, Sze Huey, and Say Beng Tan. "The correct interpretation of confidence intervals." Proceedings of Singapore Healthcare 19.3 (2010): 276-278.).
For the sake of transparency, we provide p values for readers who may be interested, although we emphasize that they should not be the basis for interpretation, as discussed in the referenced guidelines. Specifically, in Figure 1, the p values for CGM_Mean, CGM_Std, and AC_Var were 0.02, 0.02, and <0.01, respectively, while those for FBG, HbA1c, and PG120 were 0.83, 0.91, and 0.25, respectively. In Figure 3C, the p values for factors 1–5 were 0.03, 0.03, 0.03, 0.24, and 0.87, respectively, and in Figure S10B, the p values for factors 1–3 were <0.01, <0.01, and 0.20, respectively.
We appreciate the opportunity to clarify our statistical methodology and are happy to provide additional details if needed.
While hesitations remain, the ability of these authors to find groupings of these many CGM metrics in relation to %NC is of interest. The believability of the associations is impeded by an obtuse presentation of the results with core data (i.e. correlation plots between CGM metrics and %NC) buried in the supplement while main figures contain plots of numerical estimates from models which would be more usefully presented in supplementary tables.
We appreciate the reviewer’s comment regarding the presentation of our results and recognize the importance of ensuring clarity and accessibility of the core data.
The central finding of our study is twofold: first, that the numerous CGM-derived measures can be systematically classified into three distinct components-mean, variance, and autocorrelation-and second, that each of these components is independently associated with %NC. This insight cannot be derived simply from examining scatter plots of individual correlations, which are provided in the Supplementary Figures. Instead, it emerges from our statistical analyses in the main figures, including multiple regression models that reveal the independent contributions of these components to %NC.
However, we acknowledge the reviewer’s concern regarding the accessibility of key data. To improve clarity, we will move several scatter plots from the Supplementary Figures to the main figures to allow readers to more directly visualize the relationships between CGM-derived measures and %NC. We believe this revision will improve the transparency and readability of our results while maintaining the rigor of our analytical approach.
Given the small sample size in the primary analysis, there is a lot of modeling done with parameters estimated where simpler measures would serve and be more convincing as they require less data manipulation. A major example of this is that the pairwise correlation/covariance between CGM_mean, CGM_std, and AC_var is not shown and would be much more compelling in the claim that these are independent factors.
We appreciate the reviewer’s feedback on our statistical analysis and data presentation. The correlations between CGM_Mean, CGM_Std, and AC_Var are documented in Figure S1B. However, to improve accessibility and clarity, we will move these correlation analyses to the main figures. Regarding our modeling approach, we chose LASSO and PLS methods because they are well-established techniques that are particularly suited to scenarios with many input variables and a relatively small sample size. These methods have been extensively validated in the literature as robust approaches for variable selection under such conditions (Tibshirani R. 1996. Regression shrinkage and selection via the lasso. J R Stat Soc 58:267–288. Wold S, Sjöström M, Eriksson L. 2001. PLS-regression: a basic tool of chemometrics. Chemometrics Intellig Lab Syst 58:109–130. Pei X, Qi D, Liu J, Si H, Huang S, Zou S, Lu D, Li Z. 2023. Screening marker genes of type 2 diabetes mellitus in mouse lacrimal gland by LASSO regression. Sci Rep 13:6862. Wang C, Kong H, Guan Y, Yang J, Gu J, Yang S, Xu G. 2005. Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal Chem 77:4108–4116.).
Lack of methodological detail is another challenge. For example, the time period of CGM metrics or CGM placement in the primary study in relation to the IVUS-derived measurements of coronary plaques is unclear. Are they temporally distant or proximal/ concurrent with the PCI?
We appreciate the reviewer’s important question regarding the temporal relationship between CGM measurements and IVUS-derived plaque assessments. As described in our previous work (Otowa‐Suematsu, Natsu, et al. “Comparison of the relationship between multiple parameters of glycemic variability and coronary plaque vulnerability assessed by virtual histology–intravascular ultrasound.” Journal of Diabetes Investigation 9.3 (2018): 610-615.), all individuals underwent continuous glucose monitoring for at least three consecutive days within the seven-day period prior to the PCI procedure. To improve clarity for readers, we will include this methodological detail in the revised manuscript.
A patient undergoing PCI for coronary intervention would be expected to have physiological and iatrogenic glycemic disturbances that do not reflect their baseline state. This is not considered or discussed.
We appreciate the reviewer’s concern regarding potential glycemic disturbances associated with PCI. As described in our previous work (Otowa‐Suematsu, Natsu, et al. “Comparison of the relationship between multiple parameters of glycemic variability and coronary plaque vulnerability assessed by virtual histology–intravascular ultrasound.” Journal of Diabetes Investigation 9.3 (2018): 610-615.), all CGM measurements were performed before the PCI procedure. This temporal separation ensures that the glycemic patterns analyzed in our study reflect the baseline metabolic state of the patients, rather than any physiological or iatrogenic effects of PCI. To avoid any misunderstanding, we will clarify this temporal relationship in the revised manuscript.
The attempts at validation in external cohorts, Japanese, American, and Chinese are very poorly detailed. We could only find even an attempt to examine cardiovascular parameters in the Chinese data set but the outcome variables are unspecified with regard to what macrovascular events are included, their temporal relation to the CGM metrics, etc. Notably macrovascular event diagnoses are very different from the coronary plaque necrosis quantification. This could be a source of strength in the findings if carefully investigated and detailed but due to the lack of detail seems like an apples-to-oranges comparison.
We appreciate the reviewer’s comment regarding the validation cohorts and the need for greater clarity, particularly in the Chinese dataset. We acknowledge that our initial description lacked sufficient methodological detail, and we will expand the Methods section to provide a more comprehensive explanation.
For the Chinese dataset, the data collection protocol was previously documented (Zhao, Qinpei, et al. “Chinese diabetes datasets for data-driven machine learning.” Scientific Data 10.1 (2023): 35.). Briefly, trained research staff used standardized questionnaires to collect demographic and clinical information, including diabetes diagnosis, treatment history, comorbidities, and medication use. Physical examinations included anthropometric measurements, and body mass index was calculated using standard protocols. CGM monitoring was performed using the FreeStyle Libre H device (Abbott Diabetes Care, UK), which records interstitial glucose levels at 15-minute intervals for up to 14 days. Laboratory measurements, including metabolic panels, lipid profiles, and renal function tests, were obtained within six months of CGM placement. While previous studies have linked necrotic core to macrovascular events (Xie, Yong, et al. “Clinical outcome of nonculprit plaque ruptures in patients with acute coronary syndrome in the PROSPECT study.” JACC: Cardiovascular Imaging 7.4 (2014): 397-405.), we acknowledge the limitations of the cardiovascular outcomes in the Chinese data set. These outcomes were extracted from medical records rather than standardized diagnostic procedures or imaging studies. To address these concerns, we will expand the Discussion section to clarify the differences in outcome definitions and methodological approaches between the data sets.
Finally, the simulations at the end are not relevant to the main claims of the paper and we would recommend removing them for the coherence of this manuscript.
We appreciate the reviewer’s feedback regarding the relevance of the simulation component of our manuscript. The primary contribution of our study goes beyond demonstrating correlations between CGM-derived measures and %NC; it highlights three fundamental components of glycemic patterns-mean, variability, and autocorrelation-and their independent relationships with coronary plaque characteristics.
The simulations are included to illustrate how glycemic patterns with identical means and variability can have different autocorrelation structures. Because temporal autocorrelation can be conceptually difficult to interpret, these visualizations were intended to provide intuitive examples for the readers.
However, we recognize the reviewer’s concern about the coherence of the manuscript. In response, we will streamline the simulation section by removing technical simulations that do not directly support our primary conclusions, while retaining only those that enhance understanding of the three glycemic components.
-
-
-
-