The chromokinesin Kid (KIF22) forms a homodimer, moves processively along microtubules and transports double-strand DNA

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    This valuable study clarifies the mechanism by which the kinesin-10 motor protein, chromosome-associated kinesin, Kid (KIF22), enables chromosome movement during mitosis, demonstrating that human and Xenopus Kid proteins function as processive, homodimeric kinesins capable of processive microtubule plus-end motility. The convincing work highlights that Kid can recruit and transport duplex DNA along microtubules via its conserved C-terminal DNA binding domain, revising our understanding of chromokinesins' role in chromosome motility during mitosis. Although the data are robust, the manuscript would benefit from some editing for clarity.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

During prometaphase in mitosis, chromosomes are pushed toward the spindle equator. The chromokinesin Kid, also known as KIF22, moves chromosomes along spindle microtubules during prometaphase. Kid has long been considered as a monomeric and non-processive motor, different from typical kinesins. In this study, we demonstrate that the full-length Kid forms a homodimer and moves processively along microtubules. A conserved coiled-coil domain within the stalk region of Kid is not only capable of homodimer formation, but is also required for the processivity of Kid. Furthermore, the neck linker and coiled-coil domains of Kid could add processive activity to the motor domain of KIF1A, suggesting that Kid contains a functional neck linker and dimerization capability, a prerequisite for the processivity of kinesin motor domains. The full-length Kid, containing a helix-hairpin-helix domain, can transport double-strand DNA along microtubules in vitro. These findings collectively suggest the reclassification of Kid as a processive motor that transports DNA along microtubules.

Article activity feed

  1. eLife Assessment

    This valuable study clarifies the mechanism by which the kinesin-10 motor protein, chromosome-associated kinesin, Kid (KIF22), enables chromosome movement during mitosis, demonstrating that human and Xenopus Kid proteins function as processive, homodimeric kinesins capable of processive microtubule plus-end motility. The convincing work highlights that Kid can recruit and transport duplex DNA along microtubules via its conserved C-terminal DNA binding domain, revising our understanding of chromokinesins' role in chromosome motility during mitosis. Although the data are robust, the manuscript would benefit from some editing for clarity.

  2. Reviewer #1 (Public review):

    Summary:

    Mitotic kinesins carry out crucial roles in intracellular motility and mitotic spindle organization. Although many mitotic kinesins have been extensively studied, a few conserved mitotic motors remain poorly explored, including chromosome-associated kinesins. Here, Furusaki et al reconstitute recombinant chromosome-associated kinesin or chromokinesin (Kid) and reveal processive plus-end motility along microtubules. The authors purify multiple versions of Kid, revealing dimeric organization and their processive microtubule plus-ended motility which depends on their conserved motor domains, neck linkers, and coiled-coil regions. The study reveals for the first time that KID can recruit and transport duplex DNA along microtubules using its conserved C-terminal DNA binding domain. The work provides crucial revised thinking about the mechanisms of Chromokinesins mitosis as physical processive motors that mobilize chromosomes towards the microtubule plus ends in early metaphase.

    Strengths:

    The authors reconstitute multiple chromosome-associated kinesin (KID) orthologs from Xenopus and humans with microtubules and determine their oligomerization. The study shows how coiled-coil and neck linker regions of KID are essential for its function as its deletion leads to non-processive motility. CHimeras placing the KID coiled-coil and neck linker on the KIF1A motor domain led to the production of a processive recombinant motor supporting the compatibility of their motility mechanisms. The KID c-terminal tail binds and transports only double-stranded DNA and its deletion or single-stranded DNA leads to defects in this activity.

    Weaknesses:

    A minor weakness in the studies is that they do not resolve the mechanisms of KID in binding large duplex DNA molecules or condensed chromatin. The authors suggest a model in which KID forms multimers along large chromosomes that lead to their transport, but this model was not directly tested.

  3. Reviewer #2 (Public review):

    Summary:

    Previous work in the field highlighted the role of the kinesin-10 motor protein Kid (KIF22) in the polar ejection force during prometaphase. However, the biochemical and biophysical properties of Kid that enabled it to serve in this role were unclear. The authors demonstrate that human and xenopus Kid proteins are processive kinesins that function as homodimeric molecules. The data are solid and support the findings although the text could use some editing to improve clarity.

    Strengths:

    A highlight of the work is the reconstitution of DNA transport in vitro.

    A second highlight is the demonstration that the monomer vs dimer state is dependent on protein concentration.

    Weaknesses:

    The authors make several assumptions of the monomer vs dimer state of various Kid constructs without verifying the protein state using e.g. size exclusion chromatography and/or nanophotometry. They also make statements about monomer-to-dimer transitions on the microtubule without showing or quantifying the data.

    The discussion needs to better put the work into context regarding the ability of non-processive motors to work in teams (formerly thought to be the case for Kid) and how their findings on Kid change this prevailing view in the case of polar ejection force.

    The authors also do not mention previous work on kinesins with non-conventional neck linker/neck coil regions that have been shown to move processively. Their work on Kid needs to be put into this context.

  4. Author response:

    Public Reviews:

    Reviewer #1 (Public review):

    Summary:

    Mitotic kinesins carry out crucial roles in intracellular motility and mitotic spindle organization. Although many mitotic kinesins have been extensively studied, a few conserved mitotic motors remain poorly explored, including chromosome-associated kinesins. Here, Furusaki et al reconstitute recombinant chromosome-associated kinesin or chromokinesin (Kid) and reveal processive plus-end motility along microtubules. The authors purify multiple versions of Kid, revealing dimeric organization and their processive microtubule plus-ended motility which depends on their conserved motor domains, neck linkers, and coiled-coil regions. The study reveals for the first time that KID can recruit and transport duplex DNA along microtubules using its conserved C-terminal DNA binding domain. The work provides crucial revised thinking about the mechanisms of Chromokinesins mitosis as physical processive motors that mobilize chromosomes towards the microtubule plus ends in early metaphase.

    Strengths:

    The authors reconstitute multiple chromosome-associated kinesin (KID) orthologs from Xenopus and humans with microtubules and determine their oligomerization. The study shows how coiled-coil and neck linker regions of KID are essential for its function as its deletion leads to non-processive motility. CHimeras placing the KID coiled-coil and neck linker on the KIF1A motor domain led to the production of a processive recombinant motor supporting the compatibility of their motility mechanisms. The KID c-terminal tail binds and transports only double-stranded DNA and its deletion or single-stranded DNA leads to defects in this activity.

    Thank you very much.

    Weaknesses:

    A minor weakness in the studies is that they do not resolve the mechanisms of KID in binding large duplex DNA molecules or condensed chromatin. The authors suggest a model in which KID forms multimers along large chromosomes that lead to their transport, but this model was not directly tested.

    Thank you very much for your suggestion.

    We will attempt to observe the movement of longer dsDNA and/or DNA-bead complexes and compare their motility with that of a single KID motor to elucidate the cooperativity of the motor protein.

    Reviewer #2 (Public review):

    Summary:

    Previous work in the field highlighted the role of the kinesin-10 motor protein Kid (KIF22) in the polar ejection force during prometaphase. However, the biochemical and biophysical properties of Kid that enabled it to serve in this role were unclear. The authors demonstrate that human and xenopus Kid proteins are processive kinesins that function as homodimeric molecules. The data are solid and support the findings although the text could use some editing to improve clarity.

    Strengths:

    A highlight of the work is the reconstitution of DNA transport in vitro.

    A second highlight is the demonstration that the monomer vs dimer state is dependent on protein concentration.

    Thank you very much.

    Weaknesses:

    The authors make several assumptions of the monomer vs dimer state of various Kid constructs without verifying the protein state using e.g. size exclusion chromatography and/or nanophotometry. They also make statements about monomer-to-dimer transitions on the microtubule without showing or quantifying the data.

    As reviewer suggests, the monomer-to-dimer transitions on the microtubule is a speculation. What we can measure in our hands are (1) monomer and dimer ratio in the solution and (2) particle movement on microtubules. At the pmol/L condition, Kid is monomeric in solution but exhibits processive movement on microtubules. Dimerization is generally required for the processivity. Therefore, we suggest Kid forms a dimer on microtubules.

    To show that Kid forms a dimer on microtubules, we will perform photobleaching assays and measure the fluorescent intensities of each particle on microtubules to determine their oligomeric state.

    The discussion needs to better put the work into context regarding the ability of non-processive motors to work in teams (formerly thought to be the case for Kid) and how their findings on Kid change this prevailing view in the case of polar ejection force.

    We will look for the example of non-processive motors and include them in the Discussion and Citation. As described by this reviewer, Kid was originally thought to be a non-processive motor. We hope that our current work would change that view.

    The authors also do not mention previous work on kinesins with non-conventional neck linker/neck coil regions that have been shown to move processively. Their work on Kid needs to be put into this context.

    We have thought that most kinesins, belonging to the cargo-transport classes, have conserved neck linker domain and neck coil domains, with Kid being exception. We will search for more citations, including non-transport classes of kinesins, and re-write the Discussion.