Oncogenic and teratogenic effects of p53Y217C, a mouse model of the human hotspot mutant p53Y220C
Curation statements for this article:-
Curated by eLife
eLife Assessment
This work is of fundamental significance and has a compelling level of evidence for the role of mutant p53 in regulation of tumorigenesis using an in vivo mouse model. The study is well-conducted and will be of interest to a broad audience including those interested in p53, transcription factors and cancer biology.
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (eLife)
Abstract
Missense “hotspot” mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether they may gain additional functions promoting tumorigenesis remains controversial. Here we generated Trp53 Y217C , a mouse model of the human hotspot mutant TP53 Y220C . DNA damage responses were lost in p53 Y217C/Y217C cells. Surprisingly, intercrosses from p53 +/Y217C heterozygotes yielded only one p53 Y217C/Y217C female for nineteen p53 Y217C/Y217C males at weaning, a skewed distribution explained by the high frequency of p53 Y217C/Y217C female embryos with exencephaly and the death of most p53 Y217C/Y217C female neonates. Furthermore, parturition was impaired in pregnant p53 Y217C/Y217C females. Finally, p53 Y217C/Y217C males died earlier than p53 -/- males, with more aggressive thymic lymphomas. Together, these data indicate that the p53 Y217C mutation not only abrogates wildtype p53 functions, but also exerts additional effects promoting oncogenesis in males and teratogenesis or dystocia in females.
Article activity feed
-
eLife Assessment
This work is of fundamental significance and has a compelling level of evidence for the role of mutant p53 in regulation of tumorigenesis using an in vivo mouse model. The study is well-conducted and will be of interest to a broad audience including those interested in p53, transcription factors and cancer biology.
-
Reviewer #1 (Public review):
Summary:
This manuscript by Toledo and colleagues describes the generation and characterization of Y220C mice (Y217C in the mouse allele). The authors make notable findings: Y217C mice that have been backcrossed to C57Bl/6 for five generations show decreased female pup births due to exencephaly, a known defect in p53 -/- mice, and they show a correlation with decreased Xist expression, as well increased female neonatal death. They also noted similar tumor formation in Y217C/+ and p53 +/- mice, suggesting that Y217C may not function as a dominant negative. Notably, the authors find that homozygous Y217C mice die faster than p53 -/- mice and that the lymphomas in the Y217C mice were more aggressive and invasive. The authors then perform RNA seq on thymi of Y217C homozygotes compared to p53 -/-, and they …
Reviewer #1 (Public review):
Summary:
This manuscript by Toledo and colleagues describes the generation and characterization of Y220C mice (Y217C in the mouse allele). The authors make notable findings: Y217C mice that have been backcrossed to C57Bl/6 for five generations show decreased female pup births due to exencephaly, a known defect in p53 -/- mice, and they show a correlation with decreased Xist expression, as well increased female neonatal death. They also noted similar tumor formation in Y217C/+ and p53 +/- mice, suggesting that Y217C may not function as a dominant negative. Notably, the authors find that homozygous Y217C mice die faster than p53 -/- mice and that the lymphomas in the Y217C mice were more aggressive and invasive. The authors then perform RNA seq on thymi of Y217C homozygotes compared to p53 -/-, and they suggest that these differentially expressed genes may explain the increased tumorigenesis in Y217C mice.
Strengths:
Overall, the study is well controlled and quite well done and will be of interest to a broad audience, particularly given the high frequency of the Y220C mutation in cancer (1% of all cancers, 4% of ovarian cancer).
Weaknesses:
No weaknesses were noted by this reviewer.
-
Reviewer #2 (Public review):
Summary:
Jaber et al. describe the generation and characterization of a knock-in mouse strain expressing the p53 Y217C hot-spot mutation. While the homozygous mutant cells and mice reflect the typical loss-of-p53 functions, as expected, the Y217C mutation also appears to display gain-of-function (GOF) properties, exemplified by elevated metastasis in the homozygous context (as noted with several hot-spot mutations). Interestingly, this mutation does not appear to exhibit any dominant-negative effects associated with most hot-spot p53 mutations, as determined by the absence of differences in overall survival and tumor predisposition of the heterozygous mice, as well as target gene activation upon nutlin treatment.
In addition, the authors noted a severe reduction in the female 217/217 homozygous progeny, …
Reviewer #2 (Public review):
Summary:
Jaber et al. describe the generation and characterization of a knock-in mouse strain expressing the p53 Y217C hot-spot mutation. While the homozygous mutant cells and mice reflect the typical loss-of-p53 functions, as expected, the Y217C mutation also appears to display gain-of-function (GOF) properties, exemplified by elevated metastasis in the homozygous context (as noted with several hot-spot mutations). Interestingly, this mutation does not appear to exhibit any dominant-negative effects associated with most hot-spot p53 mutations, as determined by the absence of differences in overall survival and tumor predisposition of the heterozygous mice, as well as target gene activation upon nutlin treatment.
In addition, the authors noted a severe reduction in the female 217/217 homozygous progeny, significantly more than that observed with the p53 null mice, due to exencephaly, leading them to conclude that the Y217C mutation also has additional, non-cancer-related GOFs. Though this property has been well described and attributed to p53 functional impairment, the authors conclude that the Y217C has additional properties in accelerating the phenotype.
Transcriptomic analyses of thymi found additional gene signature differences between the p53 null and the Y217C strains, indicative of novel target gene activation, associated with inflammation.
Strengths:
Overall, the characterisation of the mice highlights the expected typical outcomes associated with most hot-spot p53 mutations published earlier. The quality of the work presented is well done and good, and the conclusions and reasonably well justified.
Weaknesses:
The manuscript would benefit from the provision of additional data to strengthen the claims made, as follows:
(1) Oncogenic GOF - the main data shown for GOF are the survival curve and enhanced metastasis. Often, GOF is exemplified at the cellular level as enhanced migration and invasion, which are standard assays to support the GOF. As such, the authors should perform these assays using either tumor cells derived from the mice or transformed fibroblasts from these mice. This will provide important and confirmatory evidence for GOF for Y217C.
(2) Novel target gene activation - while a set of novel targets appears to be increased in the Y217C cells compared to the p53 null cells, it is unclear how they are induced. The authors should examine if mutant p53 can bind to their promoters through CHIP assays, and, if these targets are specific to Y217C and not the other hot-spot mutations. This will strengthen the validity of the Y217C's ability to promote GOF.
(3) Dominant negative effect - the authors' claim of lack of DN effect needs to be strengthened further, as most p53 hot-spot mutations do exhibit DN effect. At the minimum, the authors should perform additional treatment with nutlin and gamma irradiation (or cytotoxic/damaging agents) and examine a set of canonical p53 target genes by qRT-PCR to strengthen their claim.
-
-
-