Cdhr1a and pcdh15b link photoreceptor outer segments with inner segment calyceal processes revealing a potential mechanism for cone-rod dystrophy

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    This potentially valuable study investigates the interaction of two integral membrane proteins (Cdhr1a and Pcdh15b) and their roles in cone-rod dystrophy. Convincing evidence using loss-of-function mutants demonstrates that both proteins are required for cone maintenance and survival. There is insufficient evidence to support the subcellular localization and the proposed heterodimeric interaction of the two proteins from distinct subcellular compartments. The methodologies are unclear, and the statistical methods and analysis are improperly applied.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Cone rod dystrophy (CRD) is a macular degeneration disorder characterized by initial cone cell photoreceptor degeneration and subsequently of rod photoreceptors. Mutations in CDHR1, a photoreceptor specific cadherin have been found to be associated with the incidence of cone-rod dystrophy and recapitulated in mouse CDHR1 knockouts. However, the molecular function of CDHR1 remains unknown. CDHR1 has been shown to localize at the leading edge of murine rod nascent outer segment (OS) making junctions to an unknown partner in the inner segment. Using Structured Illumination Microscopy (SIM), we observed that the localization of zebrafish cdhr1a extends from basal nascent OS discs above the periciliary ridge of the inner segment to a considerable length along the OS, akin to calyceal process (CPs). When labeling the CPs using pcdh15b, a CP specific cadherin, we observed that cdhr1a at the leading edge of OS juxtaposes with pcdh15b in the CP. Similar localization patterns were detected in human, macaque, xenopus, ducks, and various rodent PRCs indicating conservation. Importantly, using immunoprecipitation and K652 cell aggregation assays we demonstrate that pcdh15b and cdhr1a can interact and potentially link the OS and CP. To analyze the consequences of OS-CP interactions in CRD, we established a zebrafish cdhr1a mutant line ( cdhr1a fs*146 ) and analyzed CRD progression at high temporal resolution. Homozygous cdhr1a fs*146 mutants begin to exhibit minor cone OS morphology defects starting at 15 dpf (days post fertilization) and severe OS disruption and cell loss by 3 months. Rod OS defects were delayed until 3-6 months. Furthermore, we show that loss of cdhr1a function leads to disorganization and shortening of CPs coinciding with cone outer OS defects which is significantly exacerbated when combined with the loss of pcdh15b. In conclusion, we propose that cdhr1a and pcdh15b function to link cone OSs with CPs to maintain proper OS homeostasis thus revealing a potential novel mechanism for CRD.

Article activity feed

  1. eLife Assessment

    This potentially valuable study investigates the interaction of two integral membrane proteins (Cdhr1a and Pcdh15b) and their roles in cone-rod dystrophy. Convincing evidence using loss-of-function mutants demonstrates that both proteins are required for cone maintenance and survival. There is insufficient evidence to support the subcellular localization and the proposed heterodimeric interaction of the two proteins from distinct subcellular compartments. The methodologies are unclear, and the statistical methods and analysis are improperly applied.

  2. Reviewer #1 (Public review):

    Mutations in CDHR1, the human gene encoding an atypical cadherin-related protein expressed in photoreceptors, are thought to cause cone-rod dystrophy (CRD). However, the pathogenesis leading to this disease is unknown. Previous work has led to the hypothesis that CDHR1 is part of a cadherin-based junction that facilitates the development of new membranous discs at the base of the photoreceptor outer segments, without which photoreceptors malfunction and ultimately degenerate. CDHR1 is hypothesized to bind to a transmembrane partner to accomplish this function, but the putative partner protein has yet to be identified.

    The manuscript by Patel et al. makes an important contribution toward improving our understanding of the cellular and molecular basis of CDHR1-associated CRD. Using gene editing, they generate a loss of function mutation in the zebrafish cdhr1a gene, an ortholog of human CDHR1, and show that this novel mutant model has a retinal dystrophy phenotype, specifically related to defective growth and organization of photoreceptor outer segments (OS) and calyceal processes (CP). This phenotype seems to be progressive with age. Importantly, Patel et al, present intriguing evidence that pcdh15b, also known for causing retinal dystrophy in previous Xenopus and zebrafish loss of function studies, is the putative cdhr1a partner protein mediating the function of the junctional complex that regulates photoreceptor OS growth and stability.

    This research is significant in that it:

    (1) provides evidence for a progressive, dystrophic photoreceptor phenotype in the cdhr1a mutant and, therefore, effectively models human CRD; and

    (2) identifies pcdh15b as the putative, and long sought after, binding partner for cdhr1a, further supporting the theory of a cadherin-based junction complex that facilitates OS disc biogenesis.

    Nonetheless, the study has several shortcomings in methodology, analysis, and conceptual insight, which limits its overall impact.

    Below I outline several issues that the authors should address to strengthen their findings.

    Major comments:

    (1) Co-localization of cdhr1a and pcdh15b proteins

    The model proposed by the authors is that the interaction of cdhr1a and pcdh15b occurs in trans as a heterodimer. In cochlear hair cells, PCDH15 and CDHR23 are proposed to interact first as dimers in cis and then as heteromeric complexes in trans. This was not shown here for cdhr1a and pcdh15b, but it is a plausible configuration, as are single heteromeric dimers or homodimers. Regardless, this model depends on the differential compartmental expression of the cdhr1a and pcdh15b proteins. Data in Figure 1 show convincing evidence that these two proteins can, at least in some cases, be distributed along the length of photoreceptor membranes that are juxtaposed, as would be the case for OS and CP. If pcdh15b is predominantly expressed in CPs, whereas cdhr1a is predominantly expressed in OS, then this should be confirmed with actin double labeling with cdhr1a and pcdh15b since the apicobasal oriented (vertical) CPs would express actin in this same orientation but not in the OS. This would help to clarify whether cdhr1a and pcdh15b can be trafficked to both OS and CP compartments or whether they are mutually exclusive.

    Photoreceptor heterogeneity goes beyond the cone versus rod subtypes discussed here and it is known that in zebrafish, CP morphology is distinct in different cone subtypes as well as cone versus rod. It would be important to know which specific photoreceptor subtypes are shown in zebrafish (Figures 1A-C) and the non-fish species depicted in Figures 1E-L. Also, a larger field of view of the staining patterns for Figures 1E-L would be a helpful comparison (could be added as a supplementary figure).

    (2) Cdhr1a function in cell culture

    The authors should explain the multiple bands in the anti-FLAG blots. Also, it would be interesting to confirm that the cdhr1a D173 mutant prevents the IP interaction with pcdh15b as well as the additive effects in aggregate assays of Figure 2.

    Is it possible that the cultured cells undergo proliferation in the aggregation assays shown in Figure 2? Cells might differentially proliferate as clusters form in rotating cultures. A simple assay for cell proliferation under the different transfection conditions showing no differences would address this issue and lend further support to the proposed specific changes to cell adhesion as a readout of this assay.

    Also, the authors report that the number of clusters was normalized to the field of view, but this was not defined. Were the n values different fields of view from one transfection experiment, or were they different fields of view from separate transfection experiments? More details and clarification are needed.

    (3) Methodological issues in quantification and statistical analyses

    Were all the OS and CP lengths counted in the observation region or just a sample within the region? If the latter, what were the sampling criteria? For CPs, it seems that the length was an average estimate based on all CPs observed surrounding one cone or one-rod cell. Is this correct? Again, if sampled, how was this implemented? In Fig 4M', the cdhr1a-/- ROS mostly looks curvilinear. Did the measurements account for this, or were they straight linear dimension measurements from base to tip of the OS as depicted in Fig 5A-E? A clearer explanation of the OS and CP length quantification methodology is required.

    How were cone and rod photoreceptor cell counts performed? The legend in Figure 4 states that they again counted cells in the observation region, but no details were provided. For example, were cones and rods counted as an absolute number of cells in the observation region (e.g., number of cones per defined area) or relative to total (DAPI+) cell nuclei in the region? Changes in cell density in the mutant (smaller eye or thinner ONL) might affect this quantification so it would be important to know how cell quantification was normalized.

    In Figure 6I, K, measuring the length of the signal seems problematic. The dimension of staining is not always in the apicobasal (vertical) orientation. It might be more accurate to measure the cdhr1a expression domain relative to the OS (since the length of the OS is already reduced in the mutants). Another possible approach could be to measure the intensity of cdhr1 staining relative to the intensity within a Prph2 expression domain in each group. The authors should provide complementary evidence to support their conclusion.

    A better description of the statistical methodology is required. For example, the authors state that "each of the data points has an n of 5+ individuals." This is confusing and could indicate that in Figure 4F alone there were ~5000 individuals assayed (~100 data points per treatment group x n=5 individuals per data point x 10 treatment groups). I don't think that is what the authors intended. It would be clearer if the authors stated how many OS, CP, or cells were counted in their observation region averaged per individual, and then provided the n value of individuals used per treatment group (controls and mutants), on which the statistical analyses should be based.

    There are hundreds of data points in the separate treatment groups shown in several of the graphs. It would not be correct to perform the ANOVA on the separate OS or CP length measurements alone as this will bias the estimates since they are not all independent samples. For example, in Figure 6H, 5dpf pcdh15b+/- have shorter CPs compared to WT but pcdh15b-/- have longer compared to WT. This could be an artifact of the analysis. Moreover, the authors should clarify in the Methods section which ANOVA post hoc tests were used to control for multiple pairwise comparisons.

    (4) Cdhr1a function in photoreceptors

    The cdhr1a IHC staining in 5dpf WT larvae in Figure 3E appears different from the cdhr1a IHC staining in 5dpf WT larvae in Figure 1A or Figure 6I. Perhaps this is just the choice of image. Can the authors comment or provide a more representative image?

    The authors show that pcdh15b localization after 5dpf mirrored the disorganization of the CP observed with actin staining. They also show in Figure 5O that at 180dpf, very little pcdh15b signal remains. They suggest based on this data that total degradation of CPs has occurred in the cdhr1a-/- photoreceptors by this time. However, although reduced in length, COS and cone CPs are still present at 180dpf (Figure 5E, E'). Thus, contrary to the authors' general conclusion, it is possible that the localization, trafficking, and/or turnover of pcdh15b is maintained through a cdhr1a-dependent mechanism, irrespective of the degree to which CPs are maintained. The experiments presented here do not clearly distinguish between a requirement for maintenance of localization versus a secondary loss of localization due to defective CPs.

    (5) Conceptual insights

    The authors claim that cdhr1a and pcdh15b double mutants have synergistic OS and CP phenotypes. I think this interpretation should be revisited.

    First, assuming the model of cdhr1a-pcdh15b interaction in trans is correct, the authors have not adequately explained the logic of why disrupting one side of this interaction in a single mutant would not give the same severity of phenotype as disrupting both sides of this interaction in a double mutant.

    Second, and perhaps more critically, at 10dpf the OS and CP lengths in cdhr1a-/- mutants (Figure 7J, T) are significantly increased compared to WT. In contrast, there are no significant differences in these measurements in the pcdh15b-/- mutants. Yet in double homozygous mutants, there is a significant reduction of ~50% in these measurements compared to WT. A synergistic phenotype would imply that each mutant causes a change in the same direction and that the magnitude of this change is beyond additive in the double mutants (but still in the same direction). Instead, I would argue that the data presented in Figure 7 suggest that there might be a functionally antagonistic interaction between cdhr1a and pcdh15b with respect to OS and CP growth at 10dpf.

    If these proteins physically interacted in vivo, it would appear that the interaction is complex and that this interaction underlies both OS growth-promoting and growth-restraining (stabilizing) mechanisms working in concert. Perhaps separate homodimers or heterodimers subserve distinct CP-OS functional interactions. This might explain the age-dependent differences in mutant CP and OS length phenotypes if these mechanisms are temporally dynamic or exhibit distinct OS growth versus maintenance phases. Regardless of my speculations, the model presented by the authors appears to be too simplistic to explain the data.

  3. Reviewer #2 (Public review):

    Summary:

    The goal of this study was to develop a model for CDHR1-based Con-rod dystrophy and study the role of this cadherin in cone photoreceptors. Using genetic manipulation, a cell binding assay, and high-resolution microscopy the authors find that like rods, cones localize CDHR1 to the lateral edge of outer segment (OS) discs and closely oppose PCDH15b which is known to localize to calyceal processes (CPs). Ectopic expression of CDHR1 and PCDH15b in K652 cells indicates these cadherins promote cell aggregation as heterophilic interactants, but not through homophilic binding. This data suggests a model where CDHR1 and PCDH15b link OS and CPs and potentially stabilize cone photoreceptor structure. Mutation analysis of each cadherin results in cone structural defects at late larval stages. While pcdh15b homozygous mutants are lethal, cdhr1 mutants are viable and subsequently show photoreceptor degeneration by 3-6 months.

    Strengths:

    A major strength of this research is the development of an animal model to study the cone-specific phenotypes associated with CDHR1-based CRD. The data supporting CDHR1 (OS) and PCDH15 (CP) binding is also a strength, although this interaction could be better characterized in future studies. The quality of the high-resolution imaging (at the light and EM levels) is outstanding. In general, the results support the conclusions of the authors.

    Weaknesses:

    While the cellular phenotyping is strong, the functional consequences of CDHR1 disruption are not addressed. While this is not the focus of the investigation, such analysis would raise the impact of the study overall. This is particularly important given some of the small changes observed in OS and CP structure. While statistically significant, are the subtle changes biologically significant? Examples include cone OS length (Figures 4F, 6E) as well as other morphometric data (Figure 7I in particular). Related, for quantitative data and analysis throughout the manuscript, more information regarding the number of fish/eyes analyzed as well as cells per sample would provide confidence in the rigor. The authors should also note whether the analysis was done in an automated and/or masked manner.

  4. Reviewer #3 (Public review):

    Summary:

    The manuscript by Patel et al investigates the hypothesis that CDHR1a on photoreceptor outer segments is the binding partner for PCDH15 on the calyceal processes, and the absence of either adhesion molecule results in separation between the two structures, eventually leading to degeneration. PCDH15 mutations cause Usher syndrome, a disease of combined hearing and vision loss. In the ear, PCDH15 binds CDH23 to form tip links between stereocilia. The vision loss is less understood. Previous work suggested PCDH15 is localized to the calyceal processes, but the expression of CDH23 is inconsistent between species. Patel et al suggest that CDHR1a (formerly PCDH21) fulfills the role of CDH23 in the retina.

    The experiments are mainly performed using the zebrafish model system. Expression of Pcdh15b and Cdhr1a protein is shown in the photoreceptor layer through standard confocal and structured illumination microscopy. The two proteins co-IP and can induce aggregation in vitro. Loss of either Cdhr1a or Pcdh15, or both, results in degeneration of photoreceptor outer segments over time, with cones affected primarily.

    The idea of the study is logical given the photoreceptor diseases caused by mutations in either gene, the comparisons to stereocilia tip links, and the protein localization near the outer segments. The work here demonstrates that the two proteins interact in vitro and are both required for ongoing outer segment maintenance. The major novelty of this paper would be the demonstration that Pcdh15 localized to calyceal processes interacts with Cdhr1a on the outer segment, thereby connecting the two structures. Unfortunately, the data presented are inadequate proof of this model.

    Strengths:

    The in vitro data to support the ability of Pcdh15b and Cdhr1a to bind is well done. The use of pcdh15b and cdhr1a single and double mutants is also a strength of the study, especially being that this would be the first characterization of a zebrafish cdhr1a mutant.

    Weaknesses:

    (1) The imaging data in Figure 1 is insufficient to show the specific localization of Pcdh15 to calyceal processes or Cdhr1a to the outer segment membrane. The addition of actin co-labelling with Pcdh15/Cdhr1a would be a good start, as would axial sections. The division into rod and cone-specific imaging panels is confusing because the two cell types are in close physical proximity at 5 dpf, but the cone Cdhr1a expression is somehow missing in the rod images. The SIM data appear to be disrupted by chromatic aberration but also have no context. In the zebrafish image, the lines of Pcdh15/Cdhr1a expression would be 40-50 um in length if the scale bar is correct, which is much longer than the outer segments at this stage and therefore hard to explain.

    (2) Figure 3E staining of Cdhr1a looks very different from the staining in Figure 1. It is unclear what the authors are proposing as to the localization of Cdhr1a. In the lab's previous paper, they describe Cdhr1a as being associated with the connecting cilium and nascent OS discs, and fail to address how that reconciles with the new model of mediating CP-OS interaction. And whether Cdhr1a localizes to discrete domains on the disc edges, where it interacts with Pcdh15 on individual calyceal processes.

    (3) The authors state "In PRCs, Pcdh15 has been unequivocally shown to be localized in the CPs". However, the immunostaining here does not match the pattern seen in the Miles et al 2021 paper, which used a different antibody. Both showed loss of staining in pcdh15b mutants so unclear how to reconcile the two patterns.

    (4) The explanation for the CRISPR targets for cdhr1a and the diagram in Figure 3 does not fit with crRNA sequences or the mutation as shown. The mutation spans from the latter part of exon 5 to the initial portion of exon 6, removing intron 5-6. It should nevertheless be a frameshift mutation but requires proper documentation.

    (5) There are complications with the quantification of data. First, the number of fish analyzed for each experiment is not provided, nor is the justification for performing statistics on individual cell measurements rather than using averages for individual fish. Second, all cone subtypes are lumped together for analysis despite their variable sizes. Third, t-tests are inappropriately used for post-hoc analysis of ANOVA calculations.

    (6) Unclear how calyceal process length is being measured. The cone measurements are shown as starting at the external limiting membrane, which is not equivalent to the origin of calyceal processes, and it is uncertain what defines the apical limit given the multiple subtypes of cones. In Figure 5, the lines demonstrating the measurements seem inconsistently placed.

    (7) The number of fish analyzed by TEM and the prevalence of the phenotype across cells are not provided. A lower magnification view would provide context. Also, the authors should explain whether or not overgrowth of basal discs was observed, as seen previously in cdhr1-null frogs (Carr et al., 2021).

    (8) The statement describing the separation between calyceal processes and the outer segment in the mutants is not backed up by the data. TEM or co-labelling of the structures in SIM could be done to provide evidence.

    (9) "Based on work in the murine model and our own observations of rod CPs, we hypothesize that zebrafish rod CPs only extend along the newly forming OS discs and do not provide structural support to the ROS." Unclear how murine work would support that conclusion given the lack of CPs in mice, or what data in the manuscript supports this conclusion.

    (10) The authors state "from the fact that rod CPs are inherently much smaller than cone CPs" without providing a reference. In the manuscript, the measurements do show rod CPs to be shorter, but there are errors in the cone measurements, and it is possible that the RPE pigment is interfering with the rod measurements.

    (11) The discussion should include a better comparison of the results with ocular phenotypes in previously generated pcdh15 and cdhr1 mutant animals.

    (12) The images in panels B-F of the Supplemental Figure are uncannily similar, possibly even of the same fish at different focal planes.

  5. Author response:

    Public Reviews:

    Reviewer #1 (Public review):

    Mutations in CDHR1, the human gene encoding an atypical cadherin-related protein expressed in photoreceptors, are thought to cause cone-rod dystrophy (CRD). However, the pathogenesis leading to this disease is unknown. Previous work has led to the hypothesis that CDHR1 is part of a cadherin-based junction that facilitates the development of new membranous discs at the base of the photoreceptor outer segments, without which photoreceptors malfunction and ultimately degenerate. CDHR1 is hypothesized to bind to a transmembrane partner to accomplish this function, but the putative partner protein has yet to be identified.

    The manuscript by Patel et al. makes an important contribution toward improving our understanding of the cellular and molecular basis of CDHR1-associated CRD. Using gene editing, they generate a loss of function mutation in the zebrafish cdhr1a gene, an ortholog of human CDHR1, and show that this novel mutant model has a retinal dystrophy phenotype, specifically related to defective growth and organization of photoreceptor outer segments (OS) and calyceal processes (CP). This phenotype seems to be progressive with age. Importantly, Patel et al, present intriguing evidence that pcdh15b, also known for causing retinal dystrophy in previous Xenopus and zebrafish loss of function studies, is the putative cdhr1a partner protein mediating the function of the junctional complex that regulates photoreceptor OS growth and stability.

    This research is significant in that it:

    (1) provides evidence for a progressive, dystrophic photoreceptor phenotype in the cdhr1a mutant and, therefore, effectively models human CRD; and

    (2) identifies pcdh15b as the putative, and long sought after, binding partner for cdhr1a, further supporting the theory of a cadherin-based junction complex that facilitates OS disc biogenesis.

    Nonetheless, the study has several shortcomings in methodology, analysis, and conceptual insight, which limits its overall impact.

    Below I outline several issues that the authors should address to strengthen their findings.

    Major comments:

    (1) Co-localization of cdhr1a and pcdh15b proteins

    The model proposed by the authors is that the interaction of cdhr1a and pcdh15b occurs in trans as a heterodimer. In cochlear hair cells, PCDH15 and CDHR23 are proposed to interact first as dimers in cis and then as heteromeric complexes in trans. This was not shown here for cdhr1a and pcdh15b, but it is a plausible configuration, as are single heteromeric dimers or homodimers. Regardless, this model depends on the differential compartmental expression of the cdhr1a and pcdh15b proteins. Data in Figure 1 show convincing evidence that these two proteins can, at least in some cases, be distributed along the length of photoreceptor membranes that are juxtaposed, as would be the case for OS and CP. If pcdh15b is predominantly expressed in CPs, whereas cdhr1a is predominantly expressed in OS, then this should be confirmed with actin double labeling with cdhr1a and pcdh15b since the apicobasal oriented (vertical) CPs would express actin in this same orientation but not in the OS. This would help to clarify whether cdhr1a and pcdh15b can be trafficked to both OS and CP compartments or whether they are mutually exclusive.

    First let me thank the reviewer for taking the time to comprehensively evaluate our work and provide constructive criticism which will improve the quality of our final version.

    To address this issue, we are undertaking imaging of actin/cdhr1a and actin/pcdh15b using SIM in both transverse and axial sections. Additionally, we have recently established an immuno-gold-TEM protocol and are going to provide data showcasing co-labeling of cdhr1a and pcdh15b at TEM resolution.

    Photoreceptor heterogeneity goes beyond the cone versus rod subtypes discussed here and it is known that in zebrafish, CP morphology is distinct in different cone subtypes as well as cone versus rod. It would be important to know which specific photoreceptor subtypes are shown in zebrafish (Figures 1A-C) and the non-fish species depicted in Figures 1E-L. Also, a larger field of view of the staining patterns for Figures 1E-L would be a helpful comparison (could be added as a supplementary figure).

    The revised manuscript will include clear labeling of the different cone cell types as well as lower magnification images to be included as supplemental figures.

    (2) Cdhr1a function in cell culture

    The authors should explain the multiple bands in the anti-FLAG blots. Also, it would be interesting to confirm that the cdhr1a D173 mutant prevents the IP interaction with pcdh15b as well as the additive effects in aggregate assays of Figure 2.

    We believe that the D173 mutation results in no cdhr1a polypeptide, based on the lack of in situ signal in our WISH studies (figures showing absence of cdhr1a mRNA will be provided in a new supplemental figure). However, we will clone the D173 mutant and attempt co-IP with pchd15b in our cell culture system as well as the aggregation assay using K562 cells.

    Is it possible that the cultured cells undergo proliferation in the aggregation assays shown in Figure 2? Cells might differentially proliferate as clusters form in rotating cultures. A simple assay for cell proliferation under the different transfection conditions showing no differences would address this issue and lend further support to the proposed specific changes to cell adhesion as a readout of this assay.

    This is a possibility, however we did not use rotating cultures, this was a monolayer culture. We did not observe any differences in total cell number between the differing transfections. As such, we do not feel proliferation explains the aggregation of K562 cells.

    Also, the authors report that the number of clusters was normalized to the field of view, but this was not defined. Were the n values different fields of view from one transfection experiment, or were they different fields of view from separate transfection experiments? More details and clarification are needed.

    This will be clarified in the revised manuscript, in short we replicated this experiment 3 times, quantifying 5 different fields of view in each replicate.

    (3) Methodological issues in quantification and statistical analyses

    Were all the OS and CP lengths counted in the observation region or just a sample within the region? If the latter, what were the sampling criteria? For CPs, it seems that the length was an average estimate based on all CPs observed surrounding one cone or one-rod cell. Is this correct? Again, if sampled, how was this implemented? In Fig 4M', the cdhr1a-/- ROS mostly looks curvilinear. Did the measurements account for this, or were they straight linear dimension measurements from base to tip of the OS as depicted in Fig 5A-E? A clearer explanation of the OS and CP length quantification methodology is required.

    The revised manuscript will clearly outline measurement methods. In short, we measured every CP/OS in the imaged regions. We did not average CPs/cell, we simply included all CP measurements in our analysis. All our CP measurements (actin or cdhr1a or pcdh15), were done in the presence of a counter stain, WGA, prph2, gnb1 or PNA to ensure proper measurements (landmark) and association with proper cell type.

    All measurements were taken as best as possible to reflect a straight linear dimension for consistency.

    How were cone and rod photoreceptor cell counts performed? The legend in Figure 4 states that they again counted cells in the observation region, but no details were provided. For example, were cones and rods counted as an absolute number of cells in the observation region (e.g., number of cones per defined area) or relative to total (DAPI+) cell nuclei in the region? Changes in cell density in the mutant (smaller eye or thinner ONL) might affect this quantification so it would be important to know how cell quantification was normalized.

    The revised manuscript will clearly outline measurement methods. In short, rod and cone cell counts were based on the number of outer segments that were observed in the imaging region and previously measured for length. We did not observe any eye size differences in our mutant fish.

    In Figure 6I, K, measuring the length of the signal seems problematic. The dimension of staining is not always in the apicobasal (vertical) orientation. It might be more accurate to measure the cdhr1a expression domain relative to the OS (since the length of the OS is already reduced in the mutants). Another possible approach could be to measure the intensity of cdhr1 staining relative to the intensity within a Prph2 expression domain in each group. The authors should provide complementary evidence to support their conclusion.

    The revised manuscript will clearly outline measurement methods. In short, all of our CP measurements (actin or cdhr1a or pcdh15), were done in the presence of a counter stain, WGA, prph2, gnb1 or PNA to ensure proper measurements and association with proper cell type.

    A better description of the statistical methodology is required. For example, the authors state that "each of the data points has an n of 5+ individuals." This is confusing and could indicate that in Figure 4F alone there were ~5000 individuals assayed (~100 data points per treatment group x n=5 individuals per data point x 10 treatment groups). I don't think that is what the authors intended. It would be clearer if the authors stated how many OS, CP, or cells were counted in their observation region averaged per individual, and then provided the n value of individuals used per treatment group (controls and mutants), on which the statistical analyses should be based.

    This will be addressed in the revised manuscript. In short we had an n=5 (individual fish) analyzed for each genotype/time point. We will also include numbers of OS/CP quantified in the observation regions.

    There are hundreds of data points in the separate treatment groups shown in several of the graphs. It would not be correct to perform the ANOVA on the separate OS or CP length measurements alone as this will bias the estimates since they are not all independent samples. For example, in Figure 6H, 5dpf pcdh15b+/- have shorter CPs compared to WT but pcdh15b-/- have longer compared to WT. This could be an artifact of the analysis. Moreover, the authors should clarify in the Methods section which ANOVA post hoc tests were used to control for multiple pairwise comparisons.

    This will be clarified in the revised manuscript.

    (4) Cdhr1a function in photoreceptors

    The cdhr1a IHC staining in 5dpf WT larvae in Figure 3E appears different from the cdhr1a IHC staining in 5dpf WT larvae in Figure 1A or Figure 6I. Perhaps this is just the choice of image. Can the authors comment or provide a more representative image?

    The image in figure 3E was captured using a previous non antigen retrieval protocol which limits the resolution of the cdhr1a signal along the CP. In the revised manuscript we will include an image that better represents cdhr1a staining in the WT and mutant.

    The authors show that pcdh15b localization after 5dpf mirrored the disorganization of the CP observed with actin staining. They also show in Figure 5O that at 180dpf, very little pcdh15b signal remains. They suggest based on this data that total degradation of CPs has occurred in the cdhr1a-/- photoreceptors by this time. However, although reduced in length, COS and cone CPs are still present at 180dpf (Figure 5E, E'). Thus, contrary to the authors' general conclusion, it is possible that the localization, trafficking, and/or turnover of pcdh15b is maintained through a cdhr1a-dependent mechanism, irrespective of the degree to which CPs are maintained. The experiments presented here do not clearly distinguish between a requirement for maintenance of localization versus a secondary loss of localization due to defective CPs.

    We agree, this point will be addressed in our revised manuscript.

    (5) Conceptual insights

    The authors claim that cdhr1a and pcdh15b double mutants have synergistic OS and CP phenotypes. I think this interpretation should be revisited.

    First, assuming the model of cdhr1a-pcdh15b interaction in trans is correct, the authors have not adequately explained the logic of why disrupting one side of this interaction in a single mutant would not give the same severity of phenotype as disrupting both sides of this interaction in a double mutant.

    Second, and perhaps more critically, at 10dpf the OS and CP lengths in cdhr1a-/- mutants (Figure 7J, T) are significantly increased compared to WT. In contrast, there are no significant differences in these measurements in the pcdh15b-/- mutants. Yet in double homozygous mutants, there is a significant reduction of ~50% in these measurements compared to WT. A synergistic phenotype would imply that each mutant causes a change in the same direction and that the magnitude of this change is beyond additive in the double mutants (but still in the same direction). Instead, I would argue that the data presented in Figure 7 suggest that there might be a functionally antagonistic interaction between cdhr1a and pcdh15b with respect to OS and CP growth at 10dpf.

    If these proteins physically interacted in vivo, it would appear that the interaction is complex and that this interaction underlies both OS growth-promoting and growth-restraining (stabilizing) mechanisms working in concert. Perhaps separate homodimers or heterodimers subserve distinct CP-OS functional interactions. This might explain the age-dependent differences in mutant CP and OS length phenotypes if these mechanisms are temporally dynamic or exhibit distinct OS growth versus maintenance phases. Regardless of my speculations, the model presented by the authors appears to be too simplistic to explain the data.

    We agree with the reviewer, as such we will address this conclusion in our revised manuscript. To do so we will revise our final model and include more flexibility in the proposed mechanisms.

    Reviewer #2 (Public review):

    Summary:

    The goal of this study was to develop a model for CDHR1-based Con-rod dystrophy and study the role of this cadherin in cone photoreceptors. Using genetic manipulation, a cell binding assay, and high-resolution microscopy the authors find that like rods, cones localize CDHR1 to the lateral edge of outer segment (OS) discs and closely oppose PCDH15b which is known to localize to calyceal processes (CPs). Ectopic expression of CDHR1 and PCDH15b in K652 cells indicates these cadherins promote cell aggregation as heterophilic interactants, but not through homophilic binding. This data suggests a model where CDHR1 and PCDH15b link OS and CPs and potentially stabilize cone photoreceptor structure. Mutation analysis of each cadherin results in cone structural defects at late larval stages. While pcdh15b homozygous mutants are lethal, cdhr1 mutants are viable and subsequently show photoreceptor degeneration by 3-6 months.

    Strengths:

    A major strength of this research is the development of an animal model to study the cone-specific phenotypes associated with CDHR1-based CRD. The data supporting CDHR1 (OS) and PCDH15 (CP) binding is also a strength, although this interaction could be better characterized in future studies. The quality of the high-resolution imaging (at the light and EM levels) is outstanding. In general, the results support the conclusions of the authors.

    Weaknesses:

    While the cellular phenotyping is strong, the functional consequences of CDHR1 disruption are not addressed. While this is not the focus of the investigation, such analysis would raise the impact of the study overall. This is particularly important given some of the small changes observed in OS and CP structure. While statistically significant, are the subtle changes biologically significant? Examples include cone OS length (Figures 4F, 6E) as well as other morphometric data (Figure 7I in particular). Related, for quantitative data and analysis throughout the manuscript, more information regarding the number of fish/eyes analyzed as well as cells per sample would provide confidence in the rigor. The authors should also note whether the analysis was done in an automated and/or masked manner.

    First let me thank the reviewer for taking the time to comprehensively evaluate our work and provide constructive criticism which will improve the quality of our final version.

    The revised manuscript will clearly outline both methods and statistics used for quantitation of our data. (please see comments from reviewer 1). While we do not include direct evidence of the mechanism of CDHR1 function, we do propose that its role is important in anchoring the CP and the OS, particularly in the cones, while in rods it may serve to regulate the release of newly formed disks (as previously proposed in mice). We do plan to test both of these hypothesis directly, however, that will be the basis of our future studies.

    Reviewer #3 (Public review):

    Summary:

    The manuscript by Patel et al investigates the hypothesis that CDHR1a on photoreceptor outer segments is the binding partner for PCDH15 on the calyceal processes, and the absence of either adhesion molecule results in separation between the two structures, eventually leading to degeneration. PCDH15 mutations cause Usher syndrome, a disease of combined hearing and vision loss. In the ear, PCDH15 binds CDH23 to form tip links between stereocilia. The vision loss is less understood. Previous work suggested PCDH15 is localized to the calyceal processes, but the expression of CDH23 is inconsistent between species. Patel et al suggest that CDHR1a (formerly PCDH21) fulfills the role of CDH23 in the retina.

    The experiments are mainly performed using the zebrafish model system. Expression of Pcdh15b and Cdhr1a protein is shown in the photoreceptor layer through standard confocal and structured illumination microscopy. The two proteins co-IP and can induce aggregation in vitro. Loss of either Cdhr1a or Pcdh15, or both, results in degeneration of photoreceptor outer segments over time, with cones affected primarily.

    The idea of the study is logical given the photoreceptor diseases caused by mutations in either gene, the comparisons to stereocilia tip links, and the protein localization near the outer segments. The work here demonstrates that the two proteins interact in vitro and are both required for ongoing outer segment maintenance. The major novelty of this paper would be the demonstration that Pcdh15 localized to calyceal processes interacts with Cdhr1a on the outer segment, thereby connecting the two structures. Unfortunately, the data presented are inadequate proof of this model.

    Strengths:

    The in vitro data to support the ability of Pcdh15b and Cdhr1a to bind is well done. The use of pcdh15b and cdhr1a single and double mutants is also a strength of the study, especially being that this would be the first characterization of a zebrafish cdhr1a mutant.

    Weaknesses:

    (1) The imaging data in Figure 1 is insufficient to show the specific localization of Pcdh15 to calyceal processes or Cdhr1a to the outer segment membrane. The addition of actin co-labelling with Pcdh15/Cdhr1a would be a good start, as would axial sections. The division into rod and cone-specific imaging panels is confusing because the two cell types are in close physical proximity at 5 dpf, but the cone Cdhr1a expression is somehow missing in the rod images. The SIM data appear to be disrupted by chromatic aberration but also have no context. In the zebrafish image, the lines of Pcdh15/Cdhr1a expression would be 40-50 um in length if the scale bar is correct, which is much longer than the outer segments at this stage and therefore hard to explain.

    First let me thank the reviewer for taking the time to comprehensively evaluate our work and provide constructive criticism which will improve the quality of our final version.

    To address this issue, we are undertaking imaging of actin/cdhr1a and actin/pcdh15b using SIM in both transverse and axial sections. Additionally, we have recently established an immuno-gold-TEM protocol and are going to provide data showcasing co-labeling of cdhr1a and pcdh15b at TEM resolution. We are also going to include lower magnification images to complement the SIM images presented in figure 1.

    (2) Figure 3E staining of Cdhr1a looks very different from the staining in Figure 1. It is unclear what the authors are proposing as to the localization of Cdhr1a. In the lab's previous paper, they describe Cdhr1a as being associated with the connecting cilium and nascent OS discs, and fail to address how that reconciles with the new model of mediating CP-OS interaction. And whether Cdhr1a localizes to discrete domains on the disc edges, where it interacts with Pcdh15 on individual calyceal processes.

    The image in figure 3E was captured using a previous non antigen retrieval protocol which limits the resolution of the cdhr1a signal along the CP. In the revised manuscript we will include an image that better represents cdhr1a staining in the WT and mutant.

    (3) The authors state "In PRCs, Pcdh15 has been unequivocally shown to be localized in the CPs". However, the immunostaining here does not match the pattern seen in the Miles et al 2021 paper, which used a different antibody. Both showed loss of staining in pcdh15b mutants so unclear how to reconcile the two patterns.

    We agree that our staining appears different, but we attribute this to our antigen retrieval protocol which differed from the Miles et al paper. We also point to the fact that pcdh15b localization has been shown to be similar to our images in other species (monkey and frog). As such, we believe our protocol reveals the proper localization pattern which might be lost/hampered in the procedure used in Miles et al 2021.

    (4) The explanation for the CRISPR targets for cdhr1a and the diagram in Figure 3 does not fit with crRNA sequences or the mutation as shown. The mutation spans from the latter part of exon 5 to the initial portion of exon 6, removing intron 5-6. It should nevertheless be a frameshift mutation but requires proper documentation.

    This was an overlooked error in figure making, we apologize and will address this typo in the revised manuscript.

    (5) There are complications with the quantification of data. First, the number of fish analyzed for each experiment is not provided, nor is the justification for performing statistics on individual cell measurements rather than using averages for individual fish. Second, all cone subtypes are lumped together for analysis despite their variable sizes. Third, t-tests are inappropriately used for post-hoc analysis of ANOVA calculations.

    As we discussed for reviewer 1 and 2, all methods and quantification/statistics will be clearly described in the revised manuscript.

    (6) Unclear how calyceal process length is being measured. The cone measurements are shown as starting at the external limiting membrane, which is not equivalent to the origin of calyceal processes, and it is uncertain what defines the apical limit given the multiple subtypes of cones. In Figure 5, the lines demonstrating the measurements seem inconsistently placed.

    As we discussed for reviewer 1 and 2, all methods and quantification/statistics will be clearly described in the revised manuscript.

    (7) The number of fish analyzed by TEM and the prevalence of the phenotype across cells are not provided. A lower magnification view would provide context. Also, the authors should explain whether or not overgrowth of basal discs was observed, as seen previously in cdhr1-null frogs (Carr et al., 2021).

    The revised manuscript will include the aforementioned stats and lower magnification images. We will also compare our results directly to Carr 2021.

    (8) The statement describing the separation between calyceal processes and the outer segment in the mutants is not backed up by the data. TEM or co-labelling of the structures in SIM could be done to provide evidence.

    We will work to include more TEM and co-labeling data for the revised manuscript (see comments to reviewer 1)

    (9) "Based on work in the murine model and our own observations of rod CPs, we hypothesize that zebrafish rod CPs only extend along the newly forming OS discs and do not provide structural support to the ROS." Unclear how murine work would support that conclusion given the lack of CPs in mice, or what data in the manuscript supports this conclusion.

    In the revised manuscript we will improve our discussion of murine CPs, in that we still detect the juxtaposition of cdhr1 and pcdh15, along a potential remanent of the CP as previously described in SEM studies. Our findings do not indicate that mice or rats have CPs, we simply wanted to outline that the behavior of cdhr1 and pcdh15 still remains conserved, despite the absence of long traditional CPs.

    (10) The authors state "from the fact that rod CPs are inherently much smaller than cone CPs" without providing a reference. In the manuscript, the measurements do show rod CPs to be shorter, but there are errors in the cone measurements, and it is possible that the RPE pigment is interfering with the rod measurements.

    We will include a reference where rod CPs have been found to be shorter (monkey and frog data). We have no doubt that in zebrafish the rod CPs are significantly shorter. All our CP measurements are done with a counter stain for rods and cones to be sure that we are measuring the correct cell type.

    (11) The discussion should include a better comparison of the results with ocular phenotypes in previously generated pcdh15 and cdhr1 mutant animals.

    In the revised manuscript we will include this in our discussion.

    (12) The images in panels B-F of the Supplemental Figure are uncannily similar, possibly even of the same fish at different focal planes.

    We assure the reviewer that each of the images in supplemental figure 1 are distinct and represent different in situ experiments.