Identification of the trail-following pheromone receptor in termites

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    This important study presents the first identification of the odorant receptor for the trail pheromone in termites. The evidence supporting the conclusions is compelling, with state-of-the-art neurophysiological and genetic methods. The work will be of broad interest in multiple disciplines, such as entomology, chemical ecology, and sensory physiology.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Chemical communication is the cornerstone of eusocial insect societies since it mediates the social hierarchy, division of labor, and concerted activities of colony members. The chemistry of social insect pheromones received considerable attention in both major groups of social insects, the eusocial Hymenoptera and termites. By contrast, current knowledge on molecular mechanisms of social insect pheromone detection by odorant receptors (ORs) is limited to hymenopteran social insects and no OR was yet functionally characterized in termites, the oldest eusocial insect clade. Here, we present the first OR deorphanization in termites. Using the data from antennal transcriptome and genome of the termite Prorhinotermes simplex (Rhinotermitidae), we selected 4 candidate OR sequences, expressed them in Empty Neuron Drosophila , and functionally characterized using single sensillum recording (SSR) and a panel of termite semiochemicals. In one of the selected ORs, PsimOR14, we succeeded in obtaining strong and reliable responses to the main component of P. simplex trail-following pheromone, the monocyclic diterpene neocembrene. PsimOR14 showed a narrow tuning to neocembrene; only one additional compound out of 72 tested (geranylgeraniol) generated non-negligible responses. Subsequently, we used SSR and P. simplex workers to identify the olfactory sensillum specifically responding to neocembrene, thus likely expressing PsimOR14 . We report on homology-based modelling of neocembrene binding by PsimOR14 and show how different ligands impact the receptor dynamicity using molecular dynamics simulations. Finally, we demonstrate that PsimOR14 is significantly more expressed in workers than in soldiers, which correlates with higher sensitivity of workers to neocembrene.

Article activity feed

  1. eLife Assessment

    This important study presents the first identification of the odorant receptor for the trail pheromone in termites. The evidence supporting the conclusions is compelling, with state-of-the-art neurophysiological and genetic methods. The work will be of broad interest in multiple disciplines, such as entomology, chemical ecology, and sensory physiology.

  2. Reviewer #1 (Public review):

    Summary:

    In their comprehensive analysis Diallo et al. deorphanise the first olfactory receptor of a non-hymenopteran eusocial insect - a termite and identified the well-established trail pheromone neocembrene as the receptor's best ligand. By using a large set of odorants the authors convincingly show that, as expected for a pheromone receptor, PsimOR14 is very narrowly tuned. While the authors first make use of an ectopic expression system, the empty neuron of Drosophila melanogaster, to characterise the receptor's responses, they next perform single sensillum recordings with different sensilla types on the termite antenna. By that, they are able to identify a sensillum that houses three neurons, of which the B neuron exhibits the narrow responses described for PsimOR14. Hence the authors do not only identify the first pheromone receptor in a termite but can even localize its expression on the antenna. The authors in addition perform a structural analysis to explain the binding properties of the receptor and its major and minor ligands (as this is beyond my expertise, I cannot judge this part of the manuscript). Finally, they compare expression patterns of ORs in different castes and find that PsimOR14 is more strongly expressed in workers than in soldier termites, which corresponds well with stronger antennal responses in the worker caste.

    Strengths:

    The manuscript is well-written and a pleasure to read. The figures are beautiful and clear. I actually had a hard time coming up with suggestions.

    Weaknesses:

    Whenever it comes to the deorphanization of a receptor and its potential role in behaviour (in the case of the manuscript it would be trail-following of the termite) one thinks immediately of knocking out the receptor to check whether it is necessary for the behaviour. However, I definitely do not want to ask for this (especially as the establishment of CRISPR Cas-9 in eusocial insects usually turns out to be a nightmare). I also do not know either, whether knockdowns via RNAi have been established in termites, but maybe the authors could consider some speculation on this in the discussion.

  3. Reviewer #2 (Public review):

    Summary:

    In this manuscript, the authors performed the functional analysis of odorant receptors (ORs) of the termite Prorhinotermes simplex to identify the receptor of trail-following pheromone. The authors performed single-sensillum recording (SSR) using the transgenic Drosophila flies expressing a candidate of the pheromone receptor and revealed that PsimOR14 strongly responds to neocembrene, the major component of the pheromone. Also, the authors found that one sensillum type (S I) detects neocembrene and also performed SSR for S I in wild termite workers. Furthermore, the authors revealed the gene, transcript, and protein structures of PsimOR14, predicted the 3D model and ligand docking of PsimOR14, and demonstrated that PsimOR14 is higher expressed in workers than soldiers using RNA-seq for heads of workers and soldiers of P. simplex and that EAG response to neocembrene is higher in workers than soldiers. I consider that this study will contribute to further understanding of the molecular and evolutionary mechanisms of the chemoreception system in termites.

    Strength:

    The manuscript is well written. As far as I know, this study is the first study that identified a pheromone receptor in termites. The authors not only present a methodology for analyzing the function of termite pheromone receptors but also provide important insights in terms of the evolution of ligand selectivity of termite pheromone receptors.

    Weakness:

    As you can see in the "Recommendations to the Authors" section below, there are several things in this paper that are not fully explained about experimental methods. Except for this point, this paper appears to me to have no major weaknesses.

  4. Reviewer #3 (Public review):

    Summary:

    Chemical communication is essential for the organization of eusocial insect societies. It is used in various important contexts, such as foraging and recruiting colony members to food sources. While such pheromones have been chemically identified and their function demonstrated in bioassays, little is known about their perception. Excellent candidates are the odorant receptors that have been shown to be involved in pheromone perception in other insects including ants and bees but not termites. The authors investigated the function of the odorant receptor PsimOR14, which was one of four target odorant receptors based on gene sequences and phylogenetic analyses. They used the Drosophila empty neuron system to demonstrate that the receptor was narrowly tuned to the trail pheromone neocembrene. Similar responses to the odor panel and neocembrene in antennal recordings suggested that one specific antennal sensillum expresses PsimOR14. Additional protein modeling approaches characterized the properties of the ligand binding pocket in the receptor. Finally, PsimOR14 transcripts were found to be significantly higher in worker antennae compared to soldier antennae, which corresponds to the worker's higher sensitivity to neocembrene.

    Strengths:

    The study presents an excellent characterization of a trail pheromone receptor in a termite species. The integration of receptor phylogeny, receptor functional characterization, antennal sensilla responses, receptor structure modeling, and transcriptomic analysis is especially powerful. All parts build on each other and are well supported with a good sample size.

    Weaknesses:

    The manuscript would benefit from a more detailed explanation of the research advances this work provides. Stating that this is the first deorphanization of an odorant receptor in a clade is insufficient. The introduction primarily reviews termite chemical communication and deorphanization of olfactory receptors previously performed. Although this is essential background, it lacks a good integration into explaining what problem the current study solves.

    Selecting target ORs for deorphanization is an essential step in the approach. Unfortunately, the process of choosing these ORs has not been described. Were the authors just lucky that they found the correct OR out of the 50, or was there a specific selection process that increased the probability of success?

    The authors assigned antennal sensilla into five categories. Unfortunately, they did not support their categories well. It is not clear how they were able to differentiate SI and SII in their antennal recordings.

    The authors used a large odorant panel to determine receptor tuning. The panel included volatile polar compounds and non-volatile non-polar hydrocarbons. Usually, some heat is applied to such non-volatile odorants to increase volatility for receptor testing. It is unclear how it is possible that these non-volatile compounds can reach the tested sensilla without heat application.