Neural adaptation to the eye’s optics through phase compensation

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    This paper shows convincingly that the human visual system can recalibrate itself to compensate for phase alterations in an image induced by optical blur. This phenomenon is studied using state-of-the-art adaptive optics approaches that allow the manipulation of the eye's optics while making concurrent psychophysical measurements. The findings are broadly important because they highlight a neural mechanism by which flawed information is used to create seemingly accurate perceptions of the visual environment.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Abstract

How does the brain achieve a seemingly veridical and ‘in-focus’ perception of the world, knowing how severely corrupted visual information is by the eye’s optics? Optical blur degrades retinal image quality by reducing the contrast and disrupting the phase of transmitted signals. Neural adaptation can attenuate the impact of blur on image contrast, yet vision rather relies on perceptually-relevant information contained within the phase structure of natural images. Here we show that neural adaptation can compensate for the impact of optical aberrations on phase congruency. We used adaptive optics to fully control optical factors and test the impact of specific optical aberrations on the perceived phase of compound gratings. We assessed blur-induced changes in perceived phase over three distinct exposure spans. Under brief blur exposure, perceived phase shifts matched optical theory predictions. During short-term (∼1h) exposure, we found a reduction in blur-induced phase shifts over time, followed by after-effects in the opposite direction–a hallmark of adaptation. Finally, patients with chronic exposure to poor optical quality showed altered phase perception when tested under fully-corrected optical quality, suggesting long-term neural compensatory adjustments to phase spectra. These findings reveal that neural adaptation to optical aberrations compensates for alterations in phase congruency, helping restore perceptual quality over time.

Article activity feed

  1. eLife Assessment

    This paper shows convincingly that the human visual system can recalibrate itself to compensate for phase alterations in an image induced by optical blur. This phenomenon is studied using state-of-the-art adaptive optics approaches that allow the manipulation of the eye's optics while making concurrent psychophysical measurements. The findings are broadly important because they highlight a neural mechanism by which flawed information is used to create seemingly accurate perceptions of the visual environment.

  2. Reviewer #1 (Public review):

    Summary:

    Optical blur is characterized by contrast losses and phase shifts that alter the local relationship between the component spatial frequencies in the image. The eye experiences optical blur on several occasions - for instance, physiologically, when the focus state of the eye does not match the optical vergence demand and, in cases of pathologies like keratoconus where the cornea gets progressively distorted leading to degraded retinal image quality. Recalibration of the visual system to suprathreshold contrast losses arising from the optical blur and the mechanisms that may underlie such a recalibration have been well-researched. This study by Barbot et al presents convincing evidence that the visual system could also recalibrate itself to the phase distortions experienced with optical blur. This was demonstrated, in principle, on a small number of participants with normal vision but with induced blur (?? experienced psychophysical observers) and in a few keratoconic patients using their state-of-the-art adaptive optics apparatus. In the former cohort, known magnitudes of radially asymmetric blur from a vertical coma were induced while participants judged the position of a compound grating target that shifted in predictable ways with the induction of blur. Immediate exposure to images blurred with such higher-order aberrations resulted in position shifts that were consistent with optical theory, but prolonged exposure to such blur resulted in the position shift returning to veridical perception (albeit, not completely). When the blur was removed after the adaptation phase, after effects of the position offset were noticed. In the keratoconic cohort, such position offsets were observed even when the eye was completely corrected for optical degradation. These results are discussed in the context of the perception of real-world targets, the underlying neurophysiology, and what it means to space perception in disease conditions like keratoconus.

    Strengths:

    A clear hypothesis, a parameterized experimental space, rigor of optical correction and psychophysical judgements, and clarity in the explanation of results are the major strengths of the paper. Additional strengths include the control experiments to address confounders and the additional analyses shown in the supplementary section to rule out analytical inconsistencies in explaining the results.

    Weaknesses:

    The small sample size (especially in the keratoconic cohort) may be a limitation of the study. While the experiments conducted in this study are meant to demonstrate a basic visual phenomenon, that only 6 keratoconic patients were included in the study precludes the results from being extrapolated to the heterogeneity of disease presentation. It must, however, be noted that these are difficult experiments to conduct, and getting multiple participants to agree to such an experiment is not an easy task.

    Second, the analysis shown in Figure 6C relating the magnitude of habitual higher-order RMS to the absolute PSE shift is not convincing. The PSE's were both positive and negative in the KC patients. The direction of the phase shift experienced by the patient (i.e., positive or negative shift in the PSE) should also be determined by the pattern of HOA's in their eyes. Simply comparing the absolute magnitudes does not make sense. Would it be possible to convolve the compound grating with the PSF obtained from each patient and predict which direction should the PSE shift? This prediction can then be compared with the observed shift in the PSE's.

    A third weakness of the study may be the assumption that the phase recalibration in keratoconic cohort may be eye-specific. That is, if the participant has dissimilar severities of keratoconus, the probed eye's aberration profile may determine the phase profile that the eye is calibrated to. I am not sure to what extent this assumption is valid. Further, under natural viewing, the pupil size will change with light intensity and accommodative state and this will, in turn, determine the optical quality of the eye. Given this, it is not clear what will the visual system recalibrate itself to, when the phase shifts in the retinal image may keep changing from the underlying blur profile in the retina. Also, if the disease is progressive in nature (in their cohort, the authors indicate that the disease did not progress), the calibration state should also constantly change. What is the time scale of such a calibration and could there be multiple states of such adaptation remains to be explored. This, of course, is not a weakness of the present study, but an open question for the future.

    Finally, one additional experiment could have been performed (this is good to have information and certainly not a necessity). What is the wavefront profile of a few keratoconic patients that participated in the study, used as the adaptation profile in the 2nd experiment (as opposed to a fixed level of coma)? Would a 60-min paradigm result in adapted states that will result in phase shifts matching what is experienced by keratoconic eyes (see Marella et al., Vis Res, 2024 for a similar induced experiment for studying the impact of phase shifts on visual and stereoacuities)?

  3. Reviewer #2 (Public review):

    Summary:

    The authors examine the ability of the human visual system to adapt to optically induced phase shifts. The study shows clear adaptation to the relative phase created by exposure to vertical coma. The study assesses the impact of adaptation to the coma on the perceived relative phase of f and 3f compound gratings. It is observed that during the first couple of minutes of a 1-hour exposure to induced vertical coma, the apparent relative locations of the f and 3f shifted in the opposite direction to that induced by the coma, a classic adaptation effect. This result highlights a neural mechanism by which flawed information is used to create seemingly accurate perceptions of the visual environment.

    Strengths:

    Sophisticated and rigorous optical and psychophysical methods, and a clear research question. The manuscript is well-written and the data quality is very high. The authors are to be congratulated on this challenging and complex optics and psychophysics study.

    Weaknesses:

    Some more details on the phase and amplitude consequences of the induced coma would add value to the reader.