Allosteric inhibition of trypanosomatid pyruvate kinases by a camelid single-domain antibody

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This work presents valuable data demonstrating that a camelid single-domain antibody can selectively inhibit a key glycolytic enzyme in trypanosomes via an allosteric mechanism. The claim that this information can be exploited for the design of novel chemotherapeutics is incomplete and limited by the modest effects on parasite growth, as well as the lack of evidence for cellular target engagement in vivo.

This article has been Reviewed by the following groups

Read the full article

Abstract

African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth. We propose that these results pinpoint a site of vulnerability on trypanosomatid pyruvate kinases that may be exploited for the design of novel chemotherapeutics.

Article activity feed

  1. eLife assessment

    This work presents valuable data demonstrating that a camelid single-domain antibody can selectively inhibit a key glycolytic enzyme in trypanosomes via an allosteric mechanism. The claim that this information can be exploited for the design of novel chemotherapeutics is incomplete and limited by the modest effects on parasite growth, as well as the lack of evidence for cellular target engagement in vivo.

  2. Reviewer #1 (Public Review):

    Summary:

    The authors identified nanobodies that were specific for the trypanosomal enzyme pyruvate kinase in previous work seeking diagnostic tools. They have shown that a site involved in the allosteric regulation of the enzyme is targeted by the nanobody and using elegant structural approaches to pinpoint where binding occurs, opening the way to the design of small molecules that could also target this site.

    Strengths:

    The structural work shows the binding of a nanobody to a specific site on Trypanosoma congolense pyruvate kinase and provides a good explanation as to how binding inhibits enzyme activity. The authors go on to show that by expressing the nanobodies within the parasites they can get some inhibition of growth, which albeit rather weak, they provide a case on how this could point to targeting the same site with small molecules as potential trypanocidal drugs.

    Weaknesses:

    The impact on growth is rather marginal. Although explanations are offered on the reasons for that, including the high turnover rate of the expressed nanobody and the difficulty in achieving the high levels of inhibition of pyruvate kinase required to impact energy production sufficiently to kill parasites, this aspect of the work doesn't offer great support to developing small molecule inhibitors of the same site.

  3. Reviewer #2 (Public Review):

    Summary:

    In this work, the authors show that the camelid single-chain antibody sdAb42 selectivity inhibits Trypanosome pyruvate kinase (PYK) but not human PYK. Through the determination of the crystal structure and biophysical experiments, the authors show that the nanobody binds to the inactive T-state of the enzyme, and in silico analysis shows that the binding site coincides with an allosteric hotspot, suggesting that nanobody binding may affect the enzyme active site. Binding to the T-state of the enzyme is further supported by non-linear inhibition kinetics. PYK is an important enzyme in the glycolytic pathway, and inhibition is likely to have an impact on organisms such a trypanosomes, that heavily rely on glycolysis for their energy production. The nanobody was generated against Trypanosoma congolense PYK, but for technical reasons the authors progressed to testing its impact on cell viability in Trypanosoma brucei brucei. First, they show that sdA42 is able to inhibit Tbb PYK, albeit with lower potency. Cell-based experiments next show that expression of sdA42 has a modest, and dose-dependent effect on the growth rate of Tbb. The authors conclude that their data indicates that targeting this allosteric site affects cell growth and is a valuable new option for the development of new chemotherapeutics for trypanosomatid diseases.

    Strengths:

    The work clearly shows that sdA42A inhibits Trypanosome and Leishmania PYK selectively, with no inhibition of the human orthologue. The crystal structure clearly identifies the binding site of the nanobody, and the accompanying analysis supports that the antibody acts as an allosteric inhibitor of PYK, by locking the enzyme in its apo state (T-state).

    Weaknesses:

    (1) The most impactful claim of this work is that sdAb42-mediated inhibition of PYK negatively affects parasite growth and that this presents an opportunity to develop novel chemotherapeutics for trypanosomatid diseases. For the following reasons I think this claim is not sufficiently supported:

    - The authors do not provide evidence of target-engagement in cells, i.e. they do not show that sdA42A binds to, or inhibits, Tbb PYK in cells and/or do not provide a functional output consistent with PYK inhibition (e.g. effect on ATP production). Measuring the extent of target engagement and inhibition is important to draw conclusions from the modest effect on growth.

    - The authors do not explore the selectivity of sdA42A in cells. Potentially sdA42A may cross-react with other proteins in cells, which would confound interpretation of the results.

    - sdA42A only affects minor growth inhibition in Tbb. The growth defect is used as the main evidence to support targeting this site with chemotherapeutics, however based on the very modest effect on the parasites, one could reasonably claim that PYK is actually not a good drug target. The strongest effect on growth is seen for the high expressor clone in Figure 4a, however here the uninduced cells show an unusual profile, with a sudden increase in growth rate after 4 days, something that is not seen for any of the other control plots. This unexplained observation accentuates the growth difference between induced and uninduced, and the growth differences seen in all other experiments, including those with the highest expressors (clones 54 and 55) are much more modest. The loss of expression of sdA42A over time is presented as a reason for the limited effect, and used to further support the hypothesis that targeting the allosteric site is a suitable avenue for the development of new drugs. However, strong evidence for this is missing.

    - For chemotherapeutic interventions to be possible, a ligandable site is required. There is no analysis provided of the antibody binding site to indicate that small molecule binding is indeed feasible.

    (2) The authors comment on the modest growth inhibition, and refer to the need to achieve over 88% reduction in Vmax of PYK to see a strong effect, something that may or may not be achieved in the cell-based model (no target-engagement or functional readout provided). The slow binding model and switch of species are also raised as potential explanations. While these may be plausible explanations, they are not tested which leaves us with limited evidence to support targeting the allosteric site on PYK.

    (3) The evidence to support an allosteric mechanism is derived from structural studies, including the in silico allosteric network predictions. Unfortunately, standard enzyme kinetics mode of inhibition studies are missing. Such studies could distinguish uncompetitive from non-competitive behaviour and strengthen the claim that sdAb42 locks the enzyme complex in the apo form.

    (4) As general comment, the graphical representation of the data could be improved in line with recent recommendations: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002128, https://elifesciences.org/inside-elife/5114d8e9/webinar-report-transforming-data-visualisation-to-improve-transparency-and-reproducibility.

    - Bar-charts for potency are ideally presented as dot plots, showing the individual data points, or box plots with datapoints shown.

    - Images in Figure 7 show significant heterogeneity of nanobody expression, but the extent of this can not be gleaned from Figure 7B. It would be much better to use box plots or violin plots for each cell line on this figure panel. The same applies to Figure 10.

  4. Reviewer #3 (Public Review):

    Summary:

    Out of the 20 Neglected Tropical Diseases (NTD) highlighted by the WHO, three are caused by members of the trypanosomatids, namely Leishmanaisis, Trypanosomiasis, and Chagas disease. Trypanosomal glycolytic enzymes including pyruvate kinase (PyK) have long been recognised as potential targets. In this important study, single-chain camelid antibodies have been developed as novel and potent inhibitors of PyK from the T, congolense. To gain structural insight into the mode of action, binding was further characterised by biophysical and structural methods, including crystal structure determination of the enzyme-nanobody complex. The results revealed a novel allosteric mechanism/pathway with significant potential for the future development of novel drugs targeting allosteric and/or cryptic binding sites.

    Strengths:

    This paper covers an important area of science towards the development of novel therapies for three of the Neglected Tropical Diseases. The manuscript is very clearly written with excellent graphics making it accessible to a wide readership beyond experts. Particular strengths are the wide range of experimental and computational techniques applied to an important biological problem. The use of nanobodies in all areas from biophysical binding experiments and X-ray crystallography to in-vivo studies is particularly impressive. This is likely to inspire researchers from many areas to consider the use of nanobodies in their fields.

    Weaknesses:

    There is no particular weakness, but I think the computational analysis of allostery, which basically relies on a single server could have been more detailed.