Gait Event Detection and Gait Parameter Estimation from a Single Waist-Worn IMU Sensor
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Changes in gait are associated with an increased risk of falling and may indicate the presence of movement disorders related to neurological diseases or age-related weakness. Continuous monitoring based on inertial measurement unit (IMU) sensor data can effectively estimate gait parameters that reflect changes in gait dynamics. Monitoring using a waist-level IMU sensor is particularly useful for assessing such data, as it can be conveniently worn as a sensor-integrated belt or observed through a smartphone application. Our work investigates the efficacy of estimating gait events and gait parameters based on data collected from a waist-worn IMU sensor. The results are compared to measurements obtained using a GAITRite® system as reference. We evaluate two machine learning (ML)-based methods. Both ML methods are structured as sequence to sequence (Seq2Seq). The efficacy of both approaches in accurately determining gait events and parameters is assessed using a dataset comprising 17,643 recorded steps from 69 subjects, who performed a total of 3588 walks, each covering approximately 4 m. Results indicate that the Convolutional Neural Network (CNN)-based algorithm outperforms the long short-term memory (LSTM) method, achieving a detection accuracy of 98.94% for heel strikes (HS) and 98.65% for toe-offs (TO), with a mean error (ME) of 0.09 ± 4.69 cm in estimating step lengths.