Identifying Key Gait Features in Stroke Patients: A Machine Learning Approach with Supervised and Unsupervised Validation

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Stroke is a major cause of motor disability, degrading walking and quality of life. Wearable gait analysis with magneto-inertial measurement units (MIMUs) can quantify post-stroke impairments. We used machine learning to identify discriminative gait features in stroke, coupling supervised feature selection with unsupervised clustering to improve interpretability and generalizability. Eighty-five stroke patients and 97 healthy controls completed 10-Meter Walk Tests while wearing five MIMUs. Feature selection spanned spatiotemporal, symmetry, stability, and smoothness metrics. K-nearest neighbors (KNN), support vector machines (SVM), and decision trees (TREE) were trained, validated, and tested iteratively across data splits; clustering then verified discriminative ability. Sequential backward feature selection retained nine features, yielding accuracies (healthy vs patient) of 94.1% (KNN), 96.7% (SVM), and 89.1% (TREE). SVM generalized best. Unsupervised k-medoids with cosine distance confirmed discrimination, reaching 90% accuracy with only three features: stride speed, stance-phase coefficient of variation, and medio-lateral harmonic ratio. Results indicate that gait variability, trunk smoothness, and upper-body stability robustly characterize post-stroke dysfunctions. Notably, head-movement smoothness emerged as a novel, discriminative feature. This integrated framework shows how wearable sensors plus machine learning can support clinical gait analysis and rehabilitation planning. Future work should enable real-time deployment and broaden datasets to cover more clinical scenarios.

Article activity feed