Self-Supervised Gait Event Detection from Smartphone IMUs for Human Performance and Sports Medicine

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background: Gait event detection from inertial sensors offers scalable insights into locomotor health, with applications in clinical monitoring and mobile health. Yet supervised methods are limited by scarce annotations, device variability, and sensor placement shifts. This in silico study evaluates self-supervised learning (SSL) as a resource-efficient strategy to improve robustness and generalizability. Methods: Six public smartphone and wearable IMU datasets (WISDM, PAMAP2, KU-HAR, mHealth, OPPORTUNITY, RWHAR) were harmonized within a unified deep learning pipeline. Models were pretrained on unlabeled windows using contrastive SSL with sensor-aware augmentations, then fine-tuned with varying label fractions. Experiments systematically assessed (1) pretraining scale, (2) label efficiency, (3) augmentation contributions, (4) device/placement shifts, (5) sampling-rate sensitivity, and (6) backbone comparisons (CNN, TCN, BiLSTM, Transformer). Results: SSL consistently outperformed supervised baselines. Pretraining yielded accuracy gains of ΔF1 +0.08–0.15 and reduced stride-time error by –8 to –12 ms. SSL cut label needs by up to 95%, achieving competitive performance with only 5–10% labeled data. Sensor-aware augmentations, particularly axis-swap and drift, drove the strongest transfer gains. Robustness was maintained across sampling rates (25–100 Hz) and device/placement shifts. CNNs and TCNs offered the best efficiency–accuracy trade-offs, while Transformers delivered the highest accuracy at greater cost. Conclusions: This computational analysis across six datasets shows SSL enhances gait event detection with improved accuracy, efficiency, and robustness under minimal supervision, establishing a scalable framework for human performance and sports medicine in clinical and mobile health applications.

Article activity feed