Black-Box Modeling Approach with PGB Metric for PSRR Prediction in Op-Amps
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The rapid advancement of electronic technology demands circuit designs that minimize power consumption while maximizing performance. The power supply rejection ratio (PSRR) is a critical metric for quantifying an amplifier’s ability to suppress supply noise, yet accurately predicting PSRR in high-frequency domains and complex multi-stage architectures is increasingly challenging. In this work, we introduce a new framework for PSRR prediction that overcomes these limitations. Leveraging a simplified circuit abstraction based on Thevenin’s theorem, we reduced multi-stage operational amplifiers to “black-box” models—collapsing intricate small-signal networks into a tractable form without sacrificing accuracy. Building on this foundation, we proposed the Power-Supply Rejection Gain-Bandwidth (PGB) metric, which concisely captures the trade-off between an amplifier’s DC PSRR and the frequency range over which that rejection is effective. Using PGB, designers gain an intuitive figure-of-merit for early-stage optimization of PSRR. We validated the efficacy of the combined black-box modeling and PGB approach through detailed case studies, including a 180 nm CMOS two-stage op-amp design. These findings confirmed that the proposed black box plus PGB framework can reliably guide the design of analog circuits with stringent PSRR requirements.