Quantitative analysis of nuclear pore complex organization in Schizosaccharomyces pombe

This article has been Reviewed by the following groups

Read the full article See related articles

Listed in

Log in to save this article

Abstract

The number, distribution, and composition of nuclear pore complexes (NPCs) in the nuclear envelope varies between cell types and changes during cellular differentiation and in disease. To understand how NPC density and organization are controlled, we analyzed the NPC number and distribution in the fission yeast Schizosaccharomyces pombe using structured illumination microscopy. The small size of yeast nuclei, genetic features of fungi, and our robust image analysis pipeline allowed us to study NPCs in intact nuclei under multiple conditions. Our data revealed that NPC density is maintained across a wide range of nuclear sizes. Regions of reduced NPC density are observed over the nucleolus and surrounding the spindle pole body (SPB). Lem2-mediated tethering of the centromeres to the SPB is required to maintain NPC exclusion near SPBs. These findings provide a quantitative understanding of NPC number and distribution in S. pombe and show that interactions between the centromere and the nuclear envelope influences local NPC distribution.

Article activity feed

  1. This review reflects comments and contributions by Ankita Jha, Zara Weinberg, Julia Grzymkowski, Julien Berro, Karen Lange, Sónia Gomes Pereira, Arthur Molines, Jacob Herman, and Manoj Yadav. Review synthesized by Jacob Herman.

    The work by Joseph Varberg and colleagues uses super resolution microscopy to better characterize the non-random distribution of nuclear pore complexes within the nuclei of the fission yeast Schizosaccharomyces pombe. This work also confirms findings in other organisms that nuclear pore complexes exist in multiple compositions. In addition to better documenting this phenomenon, this work begins to characterize the mechanisms by which nuclear pore position is regulated. Specifically, the authors show that clustering centromeres at the spindle pole body excludes nuclear pore complexes from the spindle pole body, …