Endocannabinoids and their receptors modulate endometriosis pathogenesis and immune response

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    Using new cannabinoid receptor (CNR1 and CNR2) knockout mouse models, this important paper shows how dysregulation of the endocannabinoid system is involved in endometriosis progression. The transcriptomic evidence is solid, but a major limitation of the work is the absence of detailed measurements of lesion size and burden by histopathology.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Endometriosis (EM), characterized by the presence of endometrial-like tissue outside the uterus, is the leading cause of chronic pelvic pain and infertility in females of reproductive age. Despite its high prevalence, the molecular mechanisms underlying EM pathogenesis remain poorly understood. The endocannabinoid system (ECS) is known to influence several cardinal features of this complex disease including pain, vascularization, and overall lesion survival, but the exact mechanisms are not known. Utilizing CNR1 knockout (k/o), CNR2 k/o, and wild-type (WT) mouse models of EM, we reveal the contributions of ECS and these receptors in disease initiation, progression, and immune modulation. Particularly, we identified EM-specific T cell dysfunction in the CNR2 k/o mouse model of EM. We also demonstrate the impact of decidualization-induced changes on ECS components and the unique disease-associated transcriptional landscape of ECS components in EM. Imaging Mass Cytometry (IMC) analysis revealed distinct features of the microenvironment between CNR1, CNR2, and WT genotypes in the presence or absence of decidualization. This study, for the first time, provides an in-depth analysis of the involvement of the ECS in EM pathogenesis and lays the foundation for the development of novel therapeutic interventions to alleviate the burden of this debilitating condition.

Article activity feed

  1. Author response:

    Reviewer #1 (Public Review):

    Summary:

    The endocannabinoid system (ECS) components are dysregulated within the lesion microenvironment and systemic circulation of endometriosis patients. Using endometriosis mouse models and genetic loss of function approaches, Lingegowda et al. report that canonical ECS receptors, CNR1 and CNR2, are required for disease initiation, progression, and T-cell dysfunction.

    Strengths:

    The approach uses genetic approaches to establish in vivo causal relationships between dysregulated ECS and endometriosis pathogenesis. The experimental design incorporates bulk RNAseq approaches, as well as imaging mass spectrometry to characterize the mouse lesions. The identification of immune-related and T-cell-specific changes in the lesion microenvironment of CNR1 and CNR2 knockout (KO) mice represents a significant advance

    Weaknesses:

    Although the mouse phenotypic analyses involve a detailed molecular characterization of the lesion microenvironment using genomic approaches, detailed measurements of lesion size/burden and histopathology would provide a better understanding of how CNR1 or CNR2 loss contributes to endometriosis initiation and progression. The cell or tissue-specific effects of the CNR1 and CNR2 are not incorporated into the experimental design of the studies. Although this aspect of the approach is recognized as a major limitation, global CNR1 and CNR2 KO may affect normal female reproductive tract function, ovarian steroid hormone levels, decidualization response, or lead to preexisting alterations in host or donor tissues, which could affect lesion establishment and development in the surgically induced, syngeneic mouse model of endometriosis.

    We appreciate the reviewer's thoughtful and constructive feedback. We agree that the additional measurements of lesion size/burden and histopathology would provide valuable insights into the specific contributions of CNR1 and CNR2 to endometriosis progression. However, the focus of this study was on assessing the alterations in complex immune microenvironment due to the absence of CNR1 and CNR2, given their close relation in regulating immune cell populations. We will plan to incorporate these measurements in future studies to further strengthen the understanding of the disease pathogenesis. Regarding the potential effects of global knockout, the reviewer raises a valid concern. To address this, we will explore cell and/or tissue-specific knockout models in future experiments to better isolate the direct effects of CNR1 and CNR2 on the disease process, while minimizing potential confounding factors from systemic alterations.

    Reviewer #2 (Public Review):

    Summary:

    The endocannabinoid system (ECS) regulates many critical functions, including reproductive function. Recent evidence indicates that dysregulated ECS contributes to endometriosis pathophysiology and the microenvironment. Therefore, the authors further examined the dysregulated ECS and its mechanisms in endometriosis lesion establishment and progression using two different endometrial sources of mouse models of endometriosis with CNR1 and CNR2 knockout mice. The authors presented differential gene expressions and altered pathways, especially those related to the adaptive immune response in CNR1 and CNR2 ko lesions. Interestingly, the T-cell population was dramatically reduced in the peritoneal cavity lacking CNR2, and the loss of proliferative activity of CD4+ T helper cells. Imaging mass cytometry analysis provided spatial profiling of cell populations and potential relationships among immune cells and other cell types. This study provided fundamental knowledge of the endocannabinoid system in endometriosis pathophysiology.

    Strengths:

    Dysregulated ECS and its mechanisms in endometriosis pathogenesis were assessed using two different endometrial sources of mouse models of endometriosis with CNR1 and CNR2 knockout mice. Not only endometriotic lesions, but also peritoneal exudate (and splenic) cells were analyzed to understand the specific local disease environment under the dysregulated ECS.

    Providing the results of transcriptional profiles and pathways, immune cell profiles, and spatial profiles of cell populations support altered immune cell population and their disrupted functions in endometriosis pathogenesis via dysregulation of ECS.

    In line 386: Role of CNR2 in T cells. The finding that nearly absent CD3+ T cells in the peritoneal cavity of CNR2 ko mice is intriguing.

    The interpretation of the results is well-described in the Discussion.

    Weaknesses:

    The study was terminated and characterized 7 days after EM induction surgery without the details for selecting the time point to perform the experiments.

    The authors also mentioned that altered eutopic endometrium contributes to the establishment and progression of endometriosis. This reviewer agrees with lines 324-325. If so, DEGs are likely identified between eutopic endometrium (with/without endometriosis lesion induction) and ectopic lesions. It would be nice to see the data (even though using publicly available data sets).

    Figure 7 CDEF. The results of the statistical analyses and analyzed sample numbers should be added. Lines 444-450 cannot be reviewed without them.

    This reviewer agrees with lines 498-500. In contrast, retrograded menstrual debris is not decidualized. The section could be modified to avoid misunderstanding.

    We would like to thank the reviewer for insightful comments, suggestions and acknowledging the importance of the work presented in this manuscript.

    Regarding 7-day time point, we have provided rationale in lines 479-481, but agree that it isn’t sufficient and hence we have provided additional details on the selection of the 7-day time point for the experiments in methods section (Mouse model of EM). We have also noted the suggestion on providing comparison of differentially expressed genes in the eutopic endometrium vs ectopic lesions. Since there are publications comparing the eutopic vs ectopic gene expression patterns (PMIDs: 33868805 and 18818281), including a study exploring the ECS genes in the endometrium throughout different menstrual cycles (PMID: 35672435), we believe additional analysis using the same dataset may not yield new information. However, we see the value in reviewer’s comment, and we will look at the gene expression patterns in the uterine vs endometriosis like lesions in our future studies with tissue or cell specific CNR1 and CNR2 knockout models to understand functional relevance of ECS in endometriosis initiation.

    Since the IMC study was exploratory for proof of concept, we did not have enough biological replicates for meaningful statistical validation (n = 2-3). We have clarified this information in the methods, results, and figure legends for appropriately representing the limitations of the current setup.

    Finally, we appreciate the feedback on the section discussing retrograded menstrual debris. Even though the menstrual debris may not be decidualized, some endometriotic lesions have the ability to decidualize based on their response to estrogen and progesterone in a cycling manner (PMID: 26450609), similar to the endometrium in the uterine cavity. We have clarified this in the revised MS.

  2. eLife assessment

    Using new cannabinoid receptor (CNR1 and CNR2) knockout mouse models, this important paper shows how dysregulation of the endocannabinoid system is involved in endometriosis progression. The transcriptomic evidence is solid, but a major limitation of the work is the absence of detailed measurements of lesion size and burden by histopathology.

  3. Reviewer #1 (Public Review):

    Summary:

    The endocannabinoid system (ECS) components are dysregulated within the lesion microenvironment and systemic circulation of endometriosis patients. Using endometriosis mouse models and genetic loss of function approaches, Lingegowda et al. report that canonical ECS receptors, CNR1 and CNR2, are required for disease initiation, progression, and T-cell dysfunction.

    Strengths:

    The approach uses genetic approaches to establish in vivo causal relationships between dysregulated ECS and endometriosis pathogenesis. The experimental design incorporates bulk RNAseq approaches, as well as imaging mass spectrometry to characterize the mouse lesions. The identification of immune-related and T-cell-specific changes in the lesion microenvironment of CNR1 and CNR2 knockout (KO) mice represents a significant advance

    Weaknesses:

    Although the mouse phenotypic analyses involve a detailed molecular characterization of the lesion microenvironment using genomic approaches, detailed measurements of lesion size/burden and histopathology would provide a better understanding of how CNR1 or CNR2 loss contributes to endometriosis initiation and progression. The cell or tissue-specific effects of the CNR1 and CNR2 are not incorporated into the experimental design of the studies. Although this aspect of the approach is recognized as a major limitation, global CNR1 and CNR2 KO may affect normal female reproductive tract function, ovarian steroid hormone levels, decidualization response, or lead to preexisting alterations in host or donor tissues, which could affect lesion establishment and development in the surgically induced, syngeneic mouse model of endometriosis.

  4. Reviewer #2 (Public Review):

    Summary:

    The endocannabinoid system (ECS) regulates many critical functions, including reproductive function. Recent evidence indicates that dysregulated ECS contributes to endometriosis pathophysiology and the microenvironment. Therefore, the authors further examined the dysregulated ECS and its mechanisms in endometriosis lesion establishment and progression using two different endometrial sources of mouse models of endometriosis with CNR1 and CNR2 knockout mice. The authors presented differential gene expressions and altered pathways, especially those related to the adaptive immune response in CNR1 and CNR2 ko lesions. Interstingly, the T-cell population was dramatically reduced in the peritoneal cavity lacking CNR2, and the loss of proliferative activity of CD4+ T helper cells. Imaging mass cytometry analysis provided spatial profiling of cell populations and potential relationships among immune cells and other cell types. This study provided fundamental knowledge of the endocannabinoid system in endometriosis pathophysiology.

    Strengths:

    Dysregulated ECS and its mechanisms in endometriosis pathogenesis were assessed using two different endometrial sources of mouse models of endometriosis with CNR1 and CNR2 knockout mice. Not only endometriotic lesions, but also peritoneal exudate (and splenic) cells were analyzed to understand the specific local disease environment under the dysregulated ECS.

    Providing the results of transcriptional profiles and pathways, immune cell profiles, and spatial profiles of cell populations support altered immune cell population and their disrupted functions in endometriosis pathogenesis via dysregulation of ECS.

    In line 386: Role of CNR2 in T cells. The finding that nearly absent CD3+ T cells in the peritoneal cavity of CNR2 ko mice is intriguing.

    The interpretation of the results is well-described in the Discussion.

    Weaknesses:

    The study was terminated and characterized 7 days after EM induction surgery without the details for selecting the time point to perform the experiments.

    The authors also mentioned that altered eutopic endometrium contributes to the establishment and progression of endometriosis. This reviewer agrees with lines 324-325. If so, DEGs are likely identified between eutopic endometrium (with/without endometriosis lesion induction) and ectopic lesions. It would be nice to see the data (even though using publicly available data sets).

    Figure 7 CDEF. The results of the statistical analyses and analyzed sample numbers should be added. Lines 444-450 cannot be reviewed without them.

    This reviewer agrees with lines 498-500. In contrast, retrograded menstrual debris is not decidualized. The section could be modified to avoid misunderstanding.