AI Driven Virtual Power Plants: A Comprehensive Review
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The rapid proliferation of distributed energy resources (DERs), including photovoltaics, wind power, battery energy storage, and electric vehicles, has transformed traditional power systems into highly decentralized and data-rich environments. Virtual Power Plants (VPPs) have emerged as a key mechanism for aggregating these heterogeneous assets and enabling coordinated control, market participation, and grid-support functions. Recent advances in artificial intelligence (AI) have further elevated the scalability, autonomy, and responsiveness of VPP operations. This paper presents a comprehensive review of AI for VPPs, organized around a taxonomy of machine learning, deep learning, reinforcement learning, and hybrid approaches, and examines how these methods map to core VPP functions such as forecasting, scheduling, market bidding, aggregation, and ancillary services. In parallel, we analyze enabling architectural frameworks—including centralized cloud, distributed edge, hybrid cloud–edge collaboration, and emerging 5G/LEO satellite communication infrastructures—that support real-time data exchange and scalable deployment of intelligent control. By integrating methodological, functional, and architectural perspectives, this review highlights the evolution of VPPs from rule-based coordination to intelligent, autonomous energy ecosystems. Key research challenges are identified in data quality, model interpretability, multi-agent scalability, cyber-physical resilience, and the integration of AI with digital twins and edge-native computation. These findings outline promising directions for next-generation intelligent VPPs capable of delivering secure, flexible, and self-optimizing DER aggregation at scale.