Energy Storage Systems for AI Data Centers: A Review of Technologies, Characteristics, and Applicability
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The fastest growth in electricity demand in the industrialized world will likely come from the broad adoption of artificial intelligence (AI)—accelerated by the rise of generative AI models such as OpenAI’s ChatGPT. The global “data center arms race” is driving up power demand and grid stress, which creates local and regional challenges because people in the area understand that the additional data center-related electricity demand is coming from faraway places, and they will have to support the additional infrastructure while not directly benefiting from it. So, there is an incentive for the data center operators to manage the fast and unpredictable power surges internally so that their loads appear like a constant baseload to the electricity grid. Such high-intensity and short-duration loads can be served by hybrid energy storage systems (HESSs) that combine multiple storage technologies operating across different timescales. This review presents an overview of energy storage technologies, their classifications, and recent performance data, with a focus on their applicability to AI-driven computing. Technical requirements of storage systems, such as fast response, long cycle life, low degradation under frequent micro-cycling, and high ramping capability—which are critical for sustainable and reliable data center operations—are discussed. Based on these requirements, this review identifies lithium titanate oxide (LTO) and lithium iron phosphate (LFP) batteries paired with supercapacitors, flywheels, or superconducting magnetic energy storage (SMES) as the most suitable HESS configurations for AI data centers. This review also proposes AI-specific evaluation criteria, defines key performance metrics, and provides semi-quantitative guidance on power–energy partitioning for HESSs in AI data centers. This review concludes by identifying key challenges, AI-specific research gaps, and future directions for integrating HESSs with on-site generation to optimally manage the high variability in the data center load and build sustainable, low-carbon, and intelligent AI data centers.