Simulated poaching affects global connectivity and efficiency in social networks of African savanna elephants—An exemplar of how human disturbance impacts group-living species

Curation statements for this article:
  • Curated by eLife

    eLife logo

    Summary: Your study used simulated elephant poaching to investigate the impact of selective individual removal on the functional resilience of animal social networks to human-induced disturbance. This topic is interesting and timely, because understanding how threatened animal populations are impacted by humans is of critical importance and requires more study -- especially for species/processes with limited real-world data, but with a potentially strong impact on ecosystem functioning. However, the reviewers unanimously agreed that the logic and assumptions underlying the study are problematic and, thus, limit the insights that can be drawn from the simulation results. They highlighted specifically that the network metrics used to infer functionality are not supported by field data on elephants, or indeed any other study systems. Please find more detailed comments from all three reviewers appended below.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Selective harvest, such as poaching, impacts group-living animals directly through mortality of individuals with desirable traits, and indirectly by altering the structure of their social networks. Understanding the relationship between disturbance-induced, structural network changes and group performance in wild animals remains an outstanding problem. To address this problem, we evaluated the immediate effect of disturbance on group sociality in African savanna elephants—an example, group-living species threatened by poaching. Drawing on static association data from ten free-ranging groups, we constructed one empirically based, population-wide network and 100 virtual networks; performed a series of experiments ‘poaching’ the oldest, socially central or random individuals; and quantified the immediate change in the theoretical indices of network connectivity and efficiency of social diffusion. Although the social networks never broke down, targeted elimination of the socially central conspecifics, regardless of age, decreased network connectivity and efficiency. These findings hint at the need to further study resilience by modeling network reorganization and interaction-mediated socioecological learning, empirical data permitting. The main contribution of our work is in quantifying connectivity together with global efficiency in multiple social networks that feature the sociodemographic diversity likely found in wild elephant populations. The basic design of our simulation makes it adaptable for hypothesis testing about the consequences of anthropogenic disturbance or lethal management on social interactions in a variety of group-living species with limited, real-world data.

Article activity feed

  1. Reviewer #3:

    This manuscript attempts to address a timely question about animal social networks - what is their functional resilience to human-induced disturbance? The authors use association data from savanna elephants to construct empirical and virtual networks and assess how these change after virtual removal of individuals based on their age or network position (to simulate poaching events as real-world data were not available). Simulation studies require clear statements of caveats for interpreting the results as they only predict potential direct responses of a network and cannot account for the dynamic and indirect responses that are more likely to occur in nature. Here various network metrics are used to infer functionality, but critically, these are not supported by field data or citations (either from elephants or other study systems), and furthermore the relevance of the metrics to address structure vs. function is unclear to readers less familiar with SNA. Secondly, the motivation for the study is deeply embedded in elephant biology and would benefit a broader audience with a clear introduction to structural vs. functional resilience.

    1. Applicability of simulation studies

    The study sets out to test the functional resilience of elephant networks after simulated poaching events because real-world data were not available (to the authors). There are many caveats for applying the results of network simulations to real-world data because they rarely can take indirect and dynamic responses into account (unless these data are used to inform the simulation), see Shizuka & Johnson Behav Ecol 2020 for a nice review of this point. The authors allude to this in the discussion when they discuss the need for more dynamic models, but conclude by stating the need to work more collaboratively - this is a good point and I'm sure it's true, but there really needs to be a clear statement about the applicability of these simulated results in the introduction and upfront in the discussion. This is essential to avoid inadvertently misleading readers less familiar with these methods.

    1. Network measures need greater empirical support and explanation

    As this is a simulation exercise, it is essential that the network metrics are meaningful in this context. This is especially important given recent discussion of metric hacking in social network analysis studies (e.g. Webber et al. Anim Behav 2020). At present, some of the metrics are presented in a paragraph in the Introduction with vague support e.g. line 281 - "Each of these heuristics... SHOULD change drastically...", and all 7 are in table 1 but there are no references (either from elephants or even broadly-speaking from studies on networks) to support the major assumptions of the study. Refs are given in the table caption but it is unclear what these relate to. There have been some very interesting experimental studies on functional resilience which might help in this regard. E.g. Maldonado-Chaparro et al. 2018 PRSB used captive zebra finches to experimentally test foraging efficiency (i.e. functionality) of social groups after repeated disturbances to their networks, and as here, focused on functional change immediately after disturbance (e.g. line 172-73).

    More importantly, it is unclear which of the 7 metrics are supposed to inform us explicitly about structure vs. function or whether these can even be unambiguously disentangled - e.g. is clustering coefficient structure or function? It is used in both this study and by Goldenberg et al. 2016 that is introduced here as focusing only on structural resilience. It would be very helpful to have clear statements about the metrics and predictions regarding structural vs. functional resilience. At the moment they vary throughout the manuscript, e.g. referred to as metrics of social competence in the discussion (line 543). Sorry for my confusion, but there are so many different ways that we can derive metrics from networks that justifying these clearly is critical for the conclusions of the study.

    1. More succinct presentation of the knowledge gap and its broader implications beyond elephant biology.

    At present, the study is presented with elephant biology and conservation as the core motivation, yet the concept of functional resilience is fundamental for studies of any species where social connections influence the flow of information (and presumably fitness of individuals). The introduction is extremely long (10 paragraphs over 6.5 pages) and functional resilience is not introduced and defined until the end of the Introduction's 4th paragraph and its link to broader literature is confusing . Focusing the introduction on how/why structural and functional resilience may vary in networks (and how this can be inferred from network metrics), and then using elephant biology as an example for why this is relevant to study, might make it much easier to follow.

  2. Reviewer #2:

    The manuscript represents a lot of hard work on an interesting topic. Understanding how threatened populations are impacted by human-derived processes is critical, and requires more study. However, as it stands, the study suffers from some logical flaws that detract from the scientific insights that can be gained from this study. These are:

    1. The authors argue that older individuals are important repositories of ecological knowledge, which is now well-established knowledge. However, the authors then build their study around the consequences of poaching in terms of the effects on network metrics that are assumed to correspond to transmission properties. The logical problem here is that removing ecological knowledge from a network leaves nothing to transmit-hence the transmission properties of the network are inconsequential.

    2. Linked to this point is the issue that the results and discussion focus a lot on the concept of network transmission, but the study uses network metrics (e.g. diameter) as proxies of transmission properties. It is pretty well known that there are many factors (e.g. clustering coefficient) that contribute to transmission dynamics, and it is unlikely that any one network metric alone can capture the ability for a network to transmit information.

    3. The authors note that continuous data on the reorganization of the network after poaching are not existent, and that they justify using a static approach (i.e. the network does not change after a removal/simulated poaching event) by focusing on the consequences immediately after deletion. However, the simulations involve removing up to 20% of the individuals in the population, meaning that their model assumes that poaching events are occurring substantially faster than the network is reorganizing itself. This seems too unrealistic an assumption.

    4. A further issue with using a static approach is that the networks captured in the study may not represent the network structure that is in place when an event takes place in which ecological knowledge is important. For example, studies from other multilevel societies, e.g. hamadryas baboons (from Kummer's work), suggest that units come together when conditions necessitate forming larger groups. So, the network measured in the empirical data may not be the network through which ecological knowledge is transferred when an event necessitates it.

    5. Finally, the results and the conclusions drawn from the study seem in conflict. On the one hand, the main summary of the results are that removing older individuals has little, if any, impact on the network's capacity to transmit information. On the other, the conclusions seem to be slanted towards removal of older individuals as a conservation issue (e.g. L662). Thus, there is tension in the manuscript that, unfortunately, reduces both the clarity of the findings and the clarity of the take-home messages.

    Overall, the study was enjoyable to read, with lots of biology, which is a strength for a modelling study. However, some of its construction, and the reliance on simple node deletions, really limits the capacity to gain substantial new insights from this study.

  3. Reviewer #1:

    Using a simulation approach, the authors investigate the impact of removing group members likely to possess key social or ecological information on the topology of elephant social networks in order to better understand how poaching pressure may influence their resilience and functionality. Removals were based on three metrics thought to correlate with an individual's knowledge (age, degree, betweenness centrality) and compared to random removals for both an empirical network and virtual networks. Whereas targeted removals based on age had relatively limited impact on networks characteristics, removal of socially central individuals led to less integrated networks with potential consequences for the spread of adaptive information.

    The manuscript was generally clear and well-written. The introduction nicely laid out the rationale for this study and the authors do a nice job walking the reader through the steps of the simulation (how the networks were constructed, how deletions were performed, etc.). I also appreciated the discussion given to the limitations of their approach, such as the lack of network restructuring in response to removals.

    1. My main critique is that I believe the authors should be more cautious in attributing functional meaning to their network metrics, particularly given that data was unavailable to allow them to simulate a transmission process. For example, at L461-463, it is stated that targeted removal of individuals with high betweenness decreased the speed of information flow, but what was actually found was that values for weighted diameter increased. Put another way, weighted diameter provides an indication of how rapidly information could potentially flow, but not whether it in fact does so. The actual dynamics of information flow are going to depend on the nature of the information and how it is transmitted among individuals, as the authors note in the discussion (L627-640). I believe that the results should be reworded to focus more on what was actually found (i.e. changes in network metrics), with the potential functional relevance of those changes then examined in the Discussion.

    2. In addition, I couldn't see if this was addressed anywhere, but is there empirical evidence to suggest that the mature elephants that possess high-quality information are those characterized by high degree or betweenness?

    Thank you for the interesting read!

  4. Summary: Your study used simulated elephant poaching to investigate the impact of selective individual removal on the functional resilience of animal social networks to human-induced disturbance. This topic is interesting and timely, because understanding how threatened animal populations are impacted by humans is of critical importance and requires more study -- especially for species/processes with limited real-world data, but with a potentially strong impact on ecosystem functioning. However, the reviewers unanimously agreed that the logic and assumptions underlying the study are problematic and, thus, limit the insights that can be drawn from the simulation results. They highlighted specifically that the network metrics used to infer functionality are not supported by field data on elephants, or indeed any other study systems. Please find more detailed comments from all three reviewers appended below.