Peripheral anatomy and central connectivity of proprioceptive sensory neurons in the Drosophila wing
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Recent advances in electron microscopy (EM) and automated image segmentation have produced synaptic wiring diagrams of the Drosophila central nervous system. A limitation of existing fly connectome datasets is that most sensory neurons are excised during sample preparation, creating a gap between the central and peripheral nervous systems. Here, we bridge this gap by reconstructing wing sensory axons from the Female Adult Nerve Cord (FANC) EM dataset and mapping them to peripheral sensory structures using genetic tools and light microscopy. We confirm the location and identity of known wing mechanosensory neurons and identify previously uncharacterized axons, including a novel population of putative proprioceptors that make monosynaptic connections onto wing steering motor neurons. We also find that proprioceptors of adjacent campaniform sensilla on the wing have distinct axon morphologies and postsynaptic partners, suggesting a high degree of specialization in axon pathfinding and synaptic partner matching. The peripheral location and central projections of wing sensory neurons are stereotyped across flies, allowing this wing proprioceptor atlas and genetic toolkit to guide analysis of other fly connectome datasets.