Decoding semantics from natural speech using human intracranial EEG

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Brain-computer interfaces (BCIs) hold promise for restoring natural language production capabilities in patients with speech impairments, potentially enabling smooth conversation that conveys meaningful information via synthesized words. While considerable progress has been made in decoding phonetic features of speech, our ability to extract lexical semantic information (i.e. the meaning of individual words) from neural activity remains largely unexplored. Moreover, most existing BCI research has relied on controlled experimental paradigms rather than natural conversation, limiting our understanding of semantic decoding in ecological contexts. Here, we investigated the feasibility of decoding lexical semantic information from stereo-electroencephalography (sEEG) recordings in 14 participants during spontaneous conversation. Using multivariate pattern analysis, we were able to decode word level semantic features during language production with an average accuracy of 21% across all participants compared to a chance level of 10%. This semantic decoding remained robust across different semantic representations while maintaining specificity to semantic features. Further, we identified a distributed left-lateralized network spanning precentral gyrus, pars triangularis, and middle temporal cortex, with low-frequency oscillations showing stronger contributions. Together, our results establish the feasibility of extracting word meanings from neural activity during natural speech production and demonstrate the potential for decoding semantic content from unconstrained speech.

Article activity feed