Conformational dynamics and multi-modal interaction of Paxillin with the Focal Adhesion Targeting Domain
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Paxillin (PXN) and focal adhesion kinase (FAK) are two major components of the focal adhesion complex, a multiprotein structure linking the intracellular cytoskeleton to the cell exterior. PXN interacts directly with the C-terminal targeting domain of FAK (FAT) via its intrinsically disordered N-terminal domain. This interaction is necessary and sufficient for localizing FAK to focal adhesions. Furthermore, PXN serves as a platform for recruiting other proteins that together control the dynamic changes needed for cell migration and survival. Here, we show that the PXN disordered region undergoes large-scale conformational restriction upon binding to FAT, forming a 48-kDa multi-modal complex consisting of four major interconverting states. Although the complex is flexible, each state has unique sets of contacts involving disordered regions that are both highly represented in ensembles and conserved. Moreover, conserved intramolecular contacts from glutamine-rich regions in PXN contribute to high entropy and thus stability of the FAT bound complex. As PXN is a hub protein, the results provide a structural basis for understanding how perturbations that lead to cellular network rewiring, such as ligand binding and phosphorylation, may lead to shifts in the multi-state equilibrium and phenotypic switching.