Characterization and modulation of human insulin degrading enzyme conformational dynamics to control enzyme activity

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Insulin degrading enzyme (IDE) is a dimeric 110 kDa M16A zinc metalloprotease that degrades amyloidogenic peptides diverse in shape and sequence, including insulin, amylin, and amyloid-β, to prevent toxic amyloid fibril formation. IDE has a hollow catalytic chamber formed by four homologous subdomains organized into two ∼55 kDa N- and C-domains (IDE-N and IDE-C, respectively), in which peptides bind, unfold, and are repositioned for proteolysis. IDE is known to transition between a closed state, poised for catalysis, and an open state, able to release cleavage products and bind new substrate. Here, we present five cryoEM structures of the IDE dimer at 3.0-4.1 Å resolution, obtained in the presence of a sub-saturating concentration of insulin. Analysis of the heterogeneity within the particle populations comprising these structures combined with all-atom molecular dynamics (MD) simulations permitted a comprehensive characterization of IDE conformational dynamics. Our analysis identified the structural basis and key residues for these dynamics that were not revealed by IDE static structures. Notably arginine-668 serves as a molecular latch mediating the open-close transition and facilitates key protein motions through charge-swapping interactions at the IDE-N/C interface. Our size-exclusion chromatography-coupled small-angle X-ray scattering and enzymatic assays of an arginine-668 to alanine mutant indicate a profound alteration of conformational dynamics and catalytic activity. Taken together, this work highlights the power of integrating experimental and computational methodologies to understand protein dynamics, offers the molecular basis of unfoldase activity of IDE, and provides a new path forward towards the development of substrate-specific modulators of IDE activity.

Article activity feed