SPACE: STRING proteins as complementary embeddings
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Representation learning has revolutionized sequence-based prediction of protein function and subcellular localization. Protein networks are an important source of information complementary to sequences, but the use of protein networks has proven to be challenging in the context of machine learning, especially in a cross-species setting. To address this, we leveraged the STRING database of protein networks and orthology relations for 1,322 eukaryotes to generate network-based cross-species protein embeddings. We did this by first creating species-specific network embeddings and subsequently aligning them based on orthology relations to facilitate direct cross-species comparisons. We show that these aligned network embeddings ensure consistency across species without sacrificing quality compared to species-specific network embeddings. We also show that the aligned network embeddings are complementary to sequence embedding techniques, despite the use of seqeuence-based orthology relations in the alignment process. Finally, we demonstrate the utility and quality of the embeddings by using them for two well-established tasks: subcellular localization prediction and protein function prediction. Training logistic regression classifiers on aligned network embeddings and sequence embeddings improved the accuracy over using sequence alone, reaching performance numbers close to state-of-the-art deep-learning methods. A set of precomputed cross-species network embeddings and ProtT5 embeddings for all eukaryotic proteins have been included in STRING version 12.0.