Accurate Predictions of Molecular Properties of Proteins via Graph Neural Networks and Transfer Learning

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Machine learning has emerged as a promising approach for predicting molecular properties of proteins, as it addresses limitations of experimental and traditional computational methods. Here, we introduce GSnet, a graph neural network (GNN) trained to predict physicochemical and geometric properties including solvation free energies, diffusion constants, and hydrodynamic radii, based on three-dimensional protein structures. By leveraging transfer learning, pre-trained GSnet embeddings were adapted to predict solvent-accessible surface area (SASA) and residue-specific p K a values, achieving high accuracy and generalizability. Notably, GSnet outperformed existing protein embeddings for SASA prediction, and a locally charge-aware variant, aLCnet, approached the accuracy of simulation-based and empirical methods for p K a prediction. Our GNN framework demonstrated robustness across diverse datasets, including intrinsically disordered peptides, and scalability for high-throughput applications. These results highlight the potential of GNN-based embeddings and transfer learning to advance protein structure analysis, providing a foundation for integrating predictive models into proteome-wide studies and structural biology pipelines.

Article activity feed