Prefoldin 5 is a microtubule-associated protein that suppresses Tau-aggregation and neurotoxicity
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Tauopathies represent a major class of neurodegenerative disorders associated with intracellular aggregates of the microtubule-associated protein Tau. To identify molecular modulators of Tau toxicity, we used a genetic screen to identify protein chaperones whose RNAi-mediated knockdown could modulate hTau V337M -induced eye-ommatidial degeneration in Drosophila . This screen identified the Prefoldins Pfdn5 and Pfdn6 as strong modifiers of hTau V337M cytotoxicity. Consistent with the known function of Pfdn as a cotranslational chaperone for tubulin, Pfdn5 mutants showed substantially reduced levels of tubulin monomer. However, additional microtubule-related functions were indicated by the robust unexpected association of Pfdn5 with axonal microtubules in vivo, as well as binding with stabilized microtubules in biochemical assays. Loss of Pfdn5 resulted in neuromuscular junctions (NMJ) defects similar to those previously described in hTau-expressing flies: namely, increased supernumerary boutons and fewer microtubule loops within mature presynaptic boutons. Significantly, synaptic phenotypes caused by hTau V337M overexpression were also strongly enhanced in a Pfdn5 mutant background. Consistent with a role in modulating Tau toxicity, not only did loss of Pfdn5 result in increased accumulations of Tau-aggregates in hTau V337M expressing neurons, but also neuronal overexpression of Prefoldin strikingly ameliorated age-dependent neurodegeneration and memory deficits induced by pathological hTau. Together, these and other observations described herein: (a) provide new insight into Prefoldin-microtubule interactions; (b) point to essential posttranslational roles for Pfdn5 in controlling Tau-toxicity in vivo ; and (c) demonstrate that Pfdn5 overexpression is sufficient to restrict Tau-induced neurodegeneration.