Representation of male features in the female mouse Accessory Olfactory Bulb, and their stability during the estrus cycle

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Most behaviors result from integration of external and internal inputs. For example, social behavior requires information about conspecifics and internal physiological states. Like many other mammals, female mice undergo a reproductive cycle during which their physiology and behavioral responses to males change dramatically: during estrus, they are more receptive to male mating attempts. A critical element in reproductive behavior is the investigative stage, which in mice, and many other species, strongly relies on chemosensation. While the initial approach mostly involves the main olfactory system (MOS), once physical contact is established, the vomeronasal system (VNS) is engaged to provide information about potential partners’ characteristics. Given the estrus-stage dependent behavioral response, we asked whether representations of male features in the first brain relay of the VNS, namely, the accessory olfactory bulb (AOB), change during the cycle. To this end, we used a stimulus set comprising urine samples from males from different strains and virility levels, and from estrus and non-estrus females. The stimulus set was designed to reveal if response patterns of AOB neurons conform to ethologically relevant dimensions such as sex, strain, and particularly, male virility state. Using extracellular recordings in anesthetized female mice, we find that most ethological categories contained in our data set are not over-represented by AOB neurons, suggesting that early stages of VNS processing encode conspecific information efficiently. Then, comparing neuronal activity in estrus and non-estrus females, we found that overall, response characteristics at the single neuron and population levels remain stable during the reproductive cycle. The few changes that do occur, are not consistent with a systematic modulation of responses to male features. Our findings imply that the AOB presents a stable account of conspecific features to more advanced processing stages.

Article activity feed