The first complete 3D reconstruction and morphofunctional mapping of an insect eye
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The structure of compound eyes in arthropods has been the subject of many studies revealing important biological principles. However, until recently, these studies were constrained by the two-dimensional nature of available ultrastructural data. Here, by taking advantage of the novel three-dimensional ultrastructural dataset obtained using volume electron microscopy (vEM), we present the first cellular-level reconstruction of the whole compound eye of an insect, the extremely miniaturized parasitoid wasp Megaphragma viggianii . The compound eye of the female M. viggianii consists of 29 ommatidia and contains 478 cells. Despite the almost anucleate brain, all cells of the compound eye possess nuclei. Like in larger insects, the dorsal rim area (DRA) of the M. viggianii eye contains ommatidia that putatively specialize in the polarized light detection as reflected in their corneal and retinal morphology. We report the presence of three ‘ectopic’ photoreceptors. Our results offer new insights into the miniaturization of compound eyes and scaling of sensory organs in general.