Effects of parental care on skin microbial community composition in poison frogs

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    This study provides an important first look at the influence of vertical transmission in the establishment of the amphibian microbiome, with a specific focus on the potential role of parental care. Through a combination of cross-fostering experimental work, comparative analysis across species that show variable levels of care, and developmental time series, the authors provide convincing evidence that vertical transmission through care is possible, but incomplete evidence that it plays a significant role in shaping frog skin microbiomes in nature or across time. This work will be of interest to researchers studying the evolution of parental care and microbiomes in vertebrates.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Parent-offspring interactions constitute the first contact of many newborns with their environment, priming community assembly of microbes through priority effects. Early exposure to microbes can have lasting influences on the assembly and functionality of the host’s microbiota, leaving a life-long imprint on host health and disease. Studies of the role played by parental care in microbial acquisition have primarily focused on humans and hosts with agricultural relevance. Anuran vertebrates offer the opportunity to examine microbial community composition across life stages as a function of parental investment. In this study, we investigate vertical transmission of microbiota during parental care in a poison frog (Family Dendrobatidae ), where fathers transport their offspring piggyback-style from terrestrial clutches to aquatic nurseries. We found that substantial bacterial colonization of the embryo begins after hatching from the vitelline envelope, emphasizing its potential role as microbial barrier during early development. Using a laboratory cross-foster experiment, we demonstrated that poison frogs performing tadpole transport serve as a source of skin microbes for tadpoles on their back. To study how transport impacts the microbial skin communities of tadpoles in an ecologically relevant setting, we sampled frogs and tadpoles of sympatric species that do or do not exhibit tadpole transport in their natural habitat. We found more diverse microbial communities associated with tadpoles of transporting species compared to a non-transporting frog. However, we detected no difference in the degree of similarity between adult and tadpole skin microbiotas, based on whether the frog species exhibits transporting behavior or not. Using a field experiment, we confirmed that tadpole transport can result in the persistent colonization of tadpoles by isolated microbial taxa associated with the caregiver’s skin, albeit often at low prevalence. This is the first study to describe vertical transmission of skin microbes in anuran amphibians, showing that offspring transport may serve as a mechanism for transmission of parental skin microbes. Overall, these findings provide a foundation for further research on how vertical transmission in this order impacts host-associated microbiota and physiology.

Article activity feed

  1. eLife Assessment

    This study provides an important first look at the influence of vertical transmission in the establishment of the amphibian microbiome, with a specific focus on the potential role of parental care. Through a combination of cross-fostering experimental work, comparative analysis across species that show variable levels of care, and developmental time series, the authors provide convincing evidence that vertical transmission through care is possible, but incomplete evidence that it plays a significant role in shaping frog skin microbiomes in nature or across time. This work will be of interest to researchers studying the evolution of parental care and microbiomes in vertebrates.

  2. Reviewer #1 (Public review):

    Summary:

    This manuscript describes a series of lab and field experiments to understand the role of tadpole transport in shaping the microbiome of poison frogs in early life. The authors conducted a cross-foster experiment in which R. variabilis tadpoles were carried by adults of their own species, carried by adults of another frog species, or not carried at all. After being carried for 6 hours, tadpole microbiomes resembled those of their caregiving species. Next, the authors reported higher microbiome diversity in tadpoles of two species that engage in transport-based parental care compared to one species that does not. Finally, they collected tadpoles either from the backs of an adult (i.e., they had recently been transported) or from eggs (i.e., not transported) but did not find significant overlap in microbiome composition between transported tadpoles and their parents.

    Strengths:

    The cross-foster experiment and the field experiment that reared transported and non-transported tadpoles are creative ways to address an important question in animal microbiome research. Together, they imply a small role for parental care in the development of the tadpole microbiome. The manuscript is generally well-written and easy to understand.

    Weaknesses:

    (1) Developmental time series:

    It was not entirely clear how this experiment relates to the rest of the manuscript, as it does not compare any effects of transport within or across species.

    (2) Cross-foster experiment:

    The "heterospecific transport" tadpoles were manually brushed onto the back of the surrogate frog, while the "biological transport" tadpoles were picked up naturally by the parent. It is a little challenging to interpret the effect of caregiver species since it is conflated with the method of attachment to the parent. I noticed that the uptake of Os-associated microbes by Os-transported tadpoles seemed to be higher than the uptake of Rv-associated microbes by Rv-associated tadpoles (comparing the second box from the left to the rightmost boxplot in panel S2C). Perhaps this could be a technical artifact if manual attachment to Os frogs was more efficient than natural attachment to Rv frogs.

    I was also surprised to see so much of the tadpole microbiome attributed to Os in tadpoles that were not transported by Os frogs (25-50% in many cases). It suggests that SourceTracker may not be effectively classifying the taxa.

    (3) Cross-species analysis:

    Like the developmental time series, this analysis doesn't really address the central question of the manuscript. I don't think it is fair for the authors to attribute the difference in diversity to parental care behavior, since the comparison only includes n=2 transporting species and n=1 non-transporting species that differ in many other ways. I would also add that increased diversity is not necessarily an expectation of vertical transmission. The similarity between adults and tadpoles is likely a more relevant outcome for vertical transmission, but the authors did not find any evidence that tadpole-adult similarity was any higher in species with tadpole transport. In fact, tadpoles and adults were more similar in the non-transporting species than in one of the transporting species (lines 296-298), which seems to directly contradict the authors' hypothesis. I don't see this result explained or addressed in the Discussion.

    (4) Field experiment:

    The rationale and interpretation of the genus-level network are not clear, and the figure is not legible. What does it mean to "visualize the microbial interconnectedness" or to be a "central part of the community"? The previous sentences in this paragraph (lines 337-343) seem to imply that transfer is parent-specific, but the genus-level network is based on the current adult frogs, not the previous generation of parents that transported them. So it is not clear that the distribution or co-distribution of these taxa provides any insight into vertical transmission dynamics.

  3. Reviewer #2 (Public review):

    Summary:

    Here, Fischer et al. attempt to understand the role of parental care, specifically the transport of offspring, in the development of the amphibian microbiome. The amphibian microbiome is an important study system due to its association with host health and disease outcomes. This study provides vertical transfer of bacteria through parental transport of tadpoles as a mechanism influencing tadpole microbiome composition. This paper gives insight into the relative roles of the environment, species, and parental care in determining microbiome composition in amphibians.

    The authors determine the time of bacterial colonization during tadpole development using PCR, observing that tadpoles were not colonized by bacteria prior to hatching from the vitelline membrane. By doing this, the impact of transport can be more accurately assessed in their laboratory experiments. The authors found that caregiver species influenced community composition, with transported tadpoles sharing a greater proportion of their skin communities with the transporting species.

    In a comparison of three sympatric amphibian species that vary in their reproductive strategies, the authors found that tadpole community diversity was not reflective of habitat diversity, but may be associated with the different reproductive strategies of each species. Parental care explained some of the variance of tadpole microbiomes between species, however, transportation by conspecific adults did not lead to more similar microbiomes between tadpoles and adults compared to species that do not exhibit parental transport.

    I did not find any major weaknesses in my review of this paper. The work here could potentially benefit from absolute abundance levels for shared ASVs between adults and tadpoles to more thoroughly understand the influences of vertical transmission that might be masked by relative abundance counts. This would only be a minor improvement as I think the conclusions from this work would likely remain the same, however.

  4. Author response:

    To address Reviewer 1’s concerns, we will implement the following changes:

    Comment 1: We will clarify that, even without direct comparisons within or across species, whether vertically transmitted microbes act as pioneering colonizers or integrate into an existing community is an important factor influencing their effect on community composition.

    Comment 2: We will provide additional details on the biology of the surrogate frog Oophaga sylvatica, explain how tadpole manipulation might influence adhesion to the caregiver, and acknowledge that the lack of knowledge on the physiological mechanisms underlying tadpole attachment currently limits our discussion to speculation.

    We will further clarify in the “Methods” section that SourceTracker’s ability to accurately estimate source proportions was assessed by evaluating how well it assigned training samples to their correct source environments. We will provide the predictions for the training set and describe how they informed our data preprocessing and analysis approach.

    Comment 3: While we predicted that community distances between tadpoles and adults would be smaller in species with parental transport, we explicitly state that our results did not confirm this expectation. We thus see no contradiction in our discussion but will ensure that this point is more clearly communicated. In response to the reviewer’s suggestion, we will incorporate additional literature on how tadpoles’ skin microbial communities change over time and adapt to their environment. We will also expand on how the life history of L. longirostris—specifically, the frequent presence of adults in tadpole habitats—may facilitate horizontal microbiota transmission, potentially contributing to shorter community distances.

    Comment 4: We will remove the network visualization to prevent any misinterpretation.

    Additionally, following Reviewer 2’s suggestion, we will include data on the absolute abundance of ASVs shared between parent and offspring after one month of development to further support the manuscript.