Planar cell polarity coordination in a cnidarian embryo provides clues to animal body axis evolution

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    This analysis of the formation of the oral-aboral body axis in cnidarians, the sister group of bilaterians, is a significant and fundamental contribution to the field of Wnt signalling and planar cell polarity. The evidence supporting the conclusions is compelling and has the potential to contribute to a deeper understanding of the origin and evolution of Wnt signalling in metazoans. These findings will be of broad interest to developmental and evolutionary biologists.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Body axis specification is a crucial event in animal embryogenesis and was an essential evolutionary innovation for founding the animal kingdom. It involves two distinct components that coordinate to establish the spatial organisation of the embryo: initiation of cascades of regionalised gene expression and orientation of morphogenetic processes such as body elongation. Intense interest in the first component has revealed Wnt/β-catenin signalling as ancestrally responsible for initiating regional gene expression, but the evolutionary origin of oriented morphogenesis has received little attention. Here, by addressing the cell and morphological basis of body axis development in embryos of the cnidarian Clytia hemisphaerica, we have uncovered a simple and likely ancestral coordination mechanism between Wnt/β-catenin signalling and directed morphogenesis. We show that the ligand Wnt3, known to initiate oral gene expression via localised Wnt/β-catenin pathway activation, also has a key β-catenin-independent role in globally orienting planar cell polarity (PCP) to direct morphogenesis along the oral-aboral axis. This PCP orientation occurs in two distinct steps: local orientation by Wnt3 and global propagation by conserved core PCP protein interactions along the body axis. From these findings we propose novel scenarios for PCP-driven symmetry-breaking underlying the emergence of the animal body plan.

Article activity feed

  1. eLife Assessment

    This analysis of the formation of the oral-aboral body axis in cnidarians, the sister group of bilaterians, is a significant and fundamental contribution to the field of Wnt signalling and planar cell polarity. The evidence supporting the conclusions is compelling and has the potential to contribute to a deeper understanding of the origin and evolution of Wnt signalling in metazoans. These findings will be of broad interest to developmental and evolutionary biologists.

  2. Reviewer #1 (Public review):

    Summary:

    This noteworthy paper examines the role of planar cell polarity and Wnt signalling in the body axis formation of the hydrozoan Clytia. In contrast to the freshwater polyp Hydra or the sea anemone Nematostella, Clytia represents a cnidarian model system with a complete life cycle (planula-polyp-medusa). In this species, classical experiments have demonstrated that a global polarity is established from the oral end of the embryos (Freeman, 1981). Prior research has demonstrated that Wnt3 plays a role in the formation of the oral organiser in Clytia and other cnidarians, acting in an autocatalytic feedback loop with β-catenin. However, the question of whether and to what extent an oral-aboral gradient of Wnt activity is established remained unanswered. This gradient is thought to control both tissue differentiation and tissue polarity. The planar cell polarity (PCP) pathway has been linked to this polarity, although it is generally considered to be β-catenin independent.

    The authors have conducted a series of sophisticated experiments utilising morpholinos, mRNA microinjection, and immunofluorescent visualisation of PCP. The objective of these experiments was to address the function of Wnt3, β-catenin, and PCP core proteins in the coordination of the global polarity of Clytia embryos. The authors conclude that PCP plays a role in regulating polarity along the oral-aboral axis of embryos and larvae. This offers a conceivable explanation for how polarity information is established and distributed globally during Clytia embryogenesis, with implications for our understanding of axis formation in cnidarians and the evolution of Wnt signalling in general. While the experiments are well-designed and executed, there are some criticisms, questions, or suggestions that should be addressed.

    Comments:

    Beautiful and solid experiments to clarify the role of canonical Wnt signalling and PCP core factors in coordinating planar cell polarity. However, there are also several points that should be addressed.

    (1) Wnt3 cue and global PCP. PCP has been described in detail in a previous paper on Clytia (Momose et al, 2012): its orientation along the oral-aboral body axis (ciliary basal body positioning studies), and its function in directional polarity during gastrulation (Stbm-, Fz1-, and Dsh-MO experiments). I wonder if this part could be shortened. What is new, however, are the knockdown and Wnt3-mRNA rescue experiments, which provide a deeper insight into the link between Wnt3 function in the blastopore organiser as a source or cue for axis formation. These experiments demonstrate that the Wnt3 knockdown induces defects equivalent to PCP factor knockdown, but can be rescued by Wnt3-mRNA injection, even at a distance of 200 µm away from the Wnt-positive area. The experimental set-up of these new molecular experiments follows in important aspects those of Freeman's experiments of 1981 (who in turn was motivated to re-examine Teissier's work of 1931/1933 ...). Freeman did not use the term "global polarity" but the concept of an axis-inducing source and a long-range tissue polarity can be traced back to both researchers.

    (2) PCP propagation and β-catenin. The central but unanswered question in this study focuses on the interaction between Wnt3 and PCP and the propagation of PCP. Wnt3 has been described in cnidarians but also in vertebrates and insects as a canonical Wnt interacting with β-catenin in an autocatalytic loop. The surprising result of this study is that the action of Wnt3 on PCP orientation is not inhibited in the presence of a dominant-negative form of CheTCF (dnTCF) ruling out a potential function of β-catenin in PCP. This was supported by studies with constitutively active β-catenin (CA-β-cat) mRNA which was unable to restore PCP coordination nor elongation of Wnt3-depleted embryos but did restore β-catenin-dependent gastrulation. Based on these data, the authors conclude that Wnt3 has two independent roles: Wnt/β-catenin activation and initial PCP orientation (two-step model for PCP formation). However, the molecular basis for the interaction of Wnt3 with the PCP machinery and how the specificity of Wnt3 for both pathways is regulated at the level of Wnt-receiving cells (Fz-Dsh) remain unresolved. Also, with respect to PCP propagation, there is no answer with respect to the underlying mechanisms. The authors found that PCP components are expressed in the mid-blastula stage, but without any further indication of how the signal might be propagated, e.g., by a wavefront of local cell alignment. Here, it is necessary to address the underlying possible cellular interactions more explicitly.

    (3) The proposed two-step model for PCP formation has important evolutionary implications in that it excludes the current alternate model according to which a long-range Wnt3-gradient orients PCP ("Wnt/β-catenin-first"). Nevertheless, the initial PCP orientation by Wnt3 - as proposed in the two-step model - is not explained at all on the molecular level. Another possible, but less well-discussed and studied option for linking Wnt3 with PCP action could be the role of other Wnt pathways. The authors present compelling evidence that Wnt3 is the most highly expressed Wnt in Clytia at all stages of development. The authors convincingly show that Wnt3 is the most highly expressed Wnt in Clytia at all stages of development (Figure S1). However, Wnt7 is also more highly expressed, which makes it a candidate for signal transduction from canonical Wnts to PCP Wnts. An involvement of Wnt7 in PCP regulation has been described in vertebrates (http://dx.doi.org/10.1016/j.celrep.2013.12.026). This would challenge the entire discussion and speculation on the evolutionary implications according to which PCP Wnt signaling comes first (PCP-first scenario") and canonical Wnt signaling later in metazoan evolution.

    (4) The discussion, including Figure 6, is strongly biased towards the traditional evolutionary scenario postulating a choanzoan-sponge ancestry of metazoans. Chromosome-linkage data of pre-metazoans and metazoans (Schulz et al., 2023; https://doi.org/10 (1038/s41586-023-05936-6) now indicate a radically different scenario according to which ctenophores represent the ancestral form and are sister to sponges, cnidarians and bilaterians (the Ctenophora-sister hypothesis). This has also implications for the evolution of Wnt signalling, as discussed in the recent Nature Genetics Review by Holzem et al. (2024) (https://doi.org/10.1038/s41576-024-00699-w). Furthermore, it calls into question the hypothesis of a filter-feeding multicellular gastrula-like ancestor as proposed by Haeckel (Maegele et al., 2023). These papers have not yet been referenced, but they would provide a more robust discussion.

  3. Reviewer #2 (Public review):

    Summary:

    Canonical Wnt signaling has previously been shown to be responsible for correct patterning of the oral-aboral axis as well as germ layer formation in several cnidarians. In the post-gastrula stage, the planula larvae are not only elongated, they have a specific swimming direction due to the decentralized cellular positioning and slanted anchoring of the cilia. This in turn is in most other animals the result of a Wnt-Planar-cell polarity pathway. This paper by Uveira et al investigates the role of Wnt3 signaling in serving as a local cue for the PCP pathway which then is responsible for the orientation of the cilia and elongation of the planula larva of the hydrozoan Clytia hemisphaerica. Wnt3 was shown before to activate the canonical pathway via ß-catenin and to act as an axial organizer. The authors provide compelling evidence for this somewhat unusual direct link between the pathways through the same signaling molecule, Wnt3. In conclusion, they propose a two-step model: (1) local orientation by Wnt3 secretion and (2) global propagation by the PCP pathway over the whole embryo.

    Strengths:

    In a series of elegant and also seemingly sophisticated experiments, they show that Wnt3 activates the PCP pathway directly, as it happens in the absence of canonical Wnt signaling (e.g. through co-expression of dnTCF). Conversely, constitutive active ß-catenin was not able to rescue PCP coordination upon Wnt3 depletion, yet restored gastrulation. This uncouples the effect of Wnt3 on axis specification and morphogenetic movements from the elongation via PCP. Through transplantation of single blastomeres providing a local source of Wnt3, they also demonstrate the reorganization of cellular polarity immediately adjacent to the Wnt3-expressing cell patch. These transplantation experiments also uncover that mechanical cues can also trigger polarization, suggesting a mechanotransduction or direct influence on subcellular structures, e.g. actin fiber orientation.

    This is a beautiful and elegant study addressing an important question. The results have significant implications also for our understanding of the evolutionary origin of axis formation and the link of these two ancient pathways, which in most animals are controlled by distinct Wnt ligands and Frizzled receptors. The quality of the data is stunning and the paper is written in a clear and succinct manner. This paper has the potential to become a widely cited milestone paper.

    Weaknesses:

    I can not detect any major weaknesses. The work only raises a few more follow-up questions, which the authors are invited to comment on.