The Rab7-Epg5 and Rab39-ema modules cooperately position autophagosomes for efficient lysosomal fusions

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Macroautophagy, a major self-degradation pathway in eukaryotic cells, utilizes autophagosomes to transport self-material to lysosomes for degradation. While microtubular transport is crucial for the proper function of autophagy, the exact roles of factors responsible for positioning autophagosomes remain incompletely understood. In this study, we performed a loss-of-function genetic screen targeting genes potentially involved in microtubular motility. A genetic background that blocks autophagosome-lysosome fusions was used to accurately analyze autophagosome positioning. We discovered that pre-fusion autophagosomes move towards the non-centrosomal microtubule organizing center (ncMTOC) in Drosophila fat cells, which requires a dynein-dynactin complex. This process is regulated by the small GTPases Rab7 and Rab39 together with their adaptors: Epg5 and ema, respectively. The dynein-dependent movement of vesicles toward the nucleus/ncMTOC is essential for efficient autophagosomal fusions with lysosomes and subsequent degradation. Remarkably, altering the balance of kinesin and dynein motors changes the direction of autophagosome movement, indicating a competitive relationship where normally dynein-mediated transport prevails. Since pre-fusion lysosomes were positioned similarly to autophagosomes, it indicates that pre-fusion autophagosomes and lysosomes converge at the ncMTOC, which increases the efficiency of vesicle fusions.

Article activity feed