Heat Shock Factor Regulation of Antimicrobial Peptides Expression Suggests a Conserved Defense Mechanism Induced by Febrile Temperature in Arthropods

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Temperature is a critical factor influencing the outbreak and progression of viral diseases in organisms. Febrile temperatures have been shown to enhance immune competence and reduce viral replication in various species. However, the underlying mechanisms remain largely unknown. In this study, we investigate the molecular mechanisms by which elevated temperatures confer resistance to viral infections, focusing on the role of heat shock factor 1 (HSF1) in regulating antimicrobial effectors rather than the traditional target genes molecular chaperones. Using shrimp Litopenaeus vannamei as a model, we demonstrate that febrile temperatures induce HSF1, which in turn upregulates antimicrobial peptides (AMPs) that target viral envelope proteins and inhibit viral replication. Importantly, this is the first to show that HSF1 directly binds to the heat shock elements (HSE) motifs of AMPs both in shrimp and Drosophila , suggesting this may be a conserved regulatory mechanism in arthropods. Additionally, our findings highlight the role of HSF1 beyond the classical heat shock response, revealing its critical function in modulating innate immunity. These insights provide new avenues for managing viral infections in aquaculture and other settings by leveraging environmental temperature control.

Article activity feed