Sex-specific behavioral and thalamo-accumbal circuit adaptations after oxycodone abstinence
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Opioid use disorder is marked by a progressive change in the motivation to administer the drug even in the presence of negative consequences. After long periods of abstinence, the urge to return to taking the drug intensifies over time, known as incubation of craving. Conditioned responses to drug-related stimuli, can acquire motivational properties and exert control over motivated behaviors leading to relapse. Although, preclinical data suggest that the behavioral expression of opioid use is similar between male and female rodents, we do not have conclusive results on sex differences on craving and relapse across abstinence periods. Here, we investigated the effects of abstinence from oxycodone self-administration on neurotransmission in the paraventricular thalamus (PVT) to nucleus accumbens shell (NAcSh) pathway in male and female rats. Using optogenetics and ex vivo electrophysiology, we assessed synaptic strength and glutamate release probability in this pathway, as well as NAcSh medium spiny neurons (MSN) intrinsic excitability, in slices from rats which were subjected to either 1 (acute) or 14 (prolonged) days of forced abstinence after self-administration. Our results revealed no sex differences in oxycodone self-administration or somatic withdrawal symptoms following acute abstinence. However, we found a sex-specific enhancement in cue-induced relapse after prolonged, but not acute, abstinence from oxycodone self-administration, with females exhibiting higher relapse rates. Notably, prolonged abstinence led to similar increases in synaptic strength at PVT-NAcSh inputs compared to saline controls in both sexes, which was not observed after acute abstinence. Thus, prolonged abstinence results in a time-dependent increase in PVT-NAcSh synaptic strength and sex-specific effects on cue-induced relapse rates. These findings suggest that prolonged abstinence leads to significant synaptic changes, contributing to heightened relapse vulnerability, highlighting the need for targeted therapeutic strategies in opioid use disorder.