Lacticaseibacillus rhamnosus P118 enhances host tolerance to Salmonella infection by promoting microbe-derived indole metabolites

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Salmonella is one of the most common foodborne pathogens, resulting in inflammatory gastroenteritis and frequently accompanied by dysbiosis. Gut commensals, such as Lactobacillus species, have been proven to exhibit broad anti-bacterial activities and protect hosts against pathogenic infections. Here, Lacticaseibacillus rhamnosus strain P118, with great probiotic properties, was screened from 290 isolates recovered from fermented yoghurts and piglet intestines using traditional and C. elegans -infection screening strategies. Notably, P118 and its supernatant exhibited great antibacterial activities and attenuated C. elegans susceptibility to Salmonella infection. We found that P118 protected mice against Salmonella lethal infections by enhancing colonization resistance, reducing pathogen invasion, alleviating intestinal pro-inflammatory response, and improving microbial dysbiosis and metabolic disorders. Microbiota and fecal metabolome analyses suggested P118 administration significantly decreased the relative abundances of harmful microbes (e.g., Salmonella , Anaeroplasma , Klebsiella ) and increased the fecal levels of tryptophan and its derivatives (indole, indole-3-acrylic acid, 5-hydroxytryptophan, 5-methoxyindoleacetate). Deterministic processes determined the gut microbial community assembly of P118-pretreated mice. Integrated omics further demonstrated that P118 probiotic activities in enhancing host tolerance to Salmonella infection were mediated by microbe-derived tryptophan/indole metabolites (e.g., indole-3-acrylic acid, indole, tryptophan, 5-methoxyindoleacetic acid, and 5-hydroxytryptophan). Collective results demonstrate that L. rhamnosus P118 could enhance host tolerance to Salmonella infections via various pathways, including direct antibacterial actions, inhibiting Salmonella colonization and invasion, attenuating pro-inflammatory responses of intestinal macrophages, and modulating gut microbiota mediated by microbe-derived indole metabolites.

Article activity feed