A VgrG2b fragment cleaved by caspase-11/4 promotes Pseudomonas aeruginosa infection through suppressing the NLRP3 inflammasome

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    This valuable study on strategies used by Pseudomonas to subvert hots immunity identifies a new immune evasion strategy. The study presents solid evidence on the cleavage of VgrG2B by Caspase 11 and the generation of fragments that inhibit activity of the NLRP3 inflammasome. This work should be of interest to immunologists and microbiologists.

This article has been Reviewed by the following groups

Read the full article

Abstract

The T6SS of Pseudomonas aeruginosa plays an essential role in the establishment of chronic infections. Inflammatory cytokines mediated by inflammasomes are crucial for the body to resist bacterial infections. Here we found that during the infection of P. aeruginosa , non-canonical inflammasome was activated in macrophages, but the activation of downstream NLRP3 inflammasome was inhibited. The VgrG2b of P. aeruginosa is recognized and cleaved by caspase-11, generating a free C-terminal fragment. The VgrG2b C-terminus can bind to NLRP3, inhibiting the activation of the NLRP3 inflammasome by rejecting NEK7 binding to NLRP3. Administrating a specific peptide that inhibits the cleavage of VgrG2b by caspase-11 to mice can significantly improve their survival rate during infection. Our discovery elucidates a mechanism by which P. aeruginosa inhibits host immune response, providing a new approach for the future clinical treatment of P. aeruginosa infections.

Article activity feed

  1. eLife Assessment

    This valuable study on strategies used by Pseudomonas to subvert hots immunity identifies a new immune evasion strategy. The study presents solid evidence on the cleavage of VgrG2B by Caspase 11 and the generation of fragments that inhibit activity of the NLRP3 inflammasome. This work should be of interest to immunologists and microbiologists.

  2. Reviewer #1 (Public review):

    In the manuscript entitled "A VgrG2b fragment cleaved by caspase-11/4 promotes Pseudomonas aeruginosa infection through suppressing the NLRP3 inflammasome", Qian et al. found an activation of the non-canonical inflammasome, but not the downstream NLRP3 inflammasome, during the infection of macrophage by P. aeruginosa, which is in sharp contrast to that by E. coli (Figure 1). In realizing that the suppression of the NLRP3 inflammasome is Caspase-11 dependent, the authors performed a screening among P. aeruginosa proteins and identified VgrG2b being a major substrate of Caspase-11 (Figure 2). Next, the authors mapped the cleavage site on VgrG2b to D883, and demonstrated that cleavage of VgrG2b by Caspase-11 is essential for the suppression of the NLRP3 inflammasome (Figure 3). Furthermore, they found that a binding between the C-terminal fragment of the cleaved VgrG2b and NLRP3 existed (Figure 4), which was then proved to block the association of NLRP3 with NEK7 (Figure 5). Finally, the authors demonstrated that blocking of VgrG2b cleavage, by either mutation of the D883 or administration of a designed peptide, effectively improved the survival rate of the P. aeruginosa-infected mice (Figure 6). This is a well-designed and executed study, with the results clearly presented and stated.

  3. Reviewer #2 (Public review):

    Summary:

    In their manuscript, Quian and colleagues identified a novel mechanism by which Pseudomonas control inflammatory responses upon inflammasome activation. They identified a caspase-11 substrate (VgrG2b) which, upon cleavage, binds and inhibits the NLRP3 to reduce the production of pro-inflammatory cytokines. This is a unique mechanism that allows for the tailoring of the innate immune response upon bacterial recognition.

    Strengths:

    The authors are presenting here a novel conceptual framework in host-pathogen interactions. Their work is supported by a range of approaches (biochemical, cellular immunology, microbiology, animal models), and their conclusions are supported by multiple independent evidences. The work is likely to have an important impact on the innate immunity field and host-pathogen interactions field and may guide the development of novel inhibitors.

    Weaknesses:

    Although quite exhaustive, a few of the authors' conclusions are not fully supported (e.g., caspase-11 directly cleaving VgrG2b, the unique affinity of VgrG2b-C for NLRP3) and would require complementary approaches to validate their findings fully. This is minimal.