Genome-wide analysis of Smad and Schnurri transcription factors in C. elegans demonstrates widespread interaction and a function in collagen secretion

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This study presents valuable findings that will allow for a better understanding of the targets of SMAD and Schnurri, transcription factors that act downstream in the BMP signalling pathway. The evidence presented in this manuscript is solid, but because the claims of a SMA-3/SMA-9 complex are not experimentally supported, they should be toned down. Revising the discussion to give a broader context of BMP-driven body size control would help the readers put this work in a larger context. This work will be of broad interest to colleagues studying BMP signalling across phyla.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Smads and their transcription factor partners mediate the transcriptional responses of target cells to secreted ligands of the Transforming Growth Factor-β (TGF-β) family, including those of the conserved bone morphogenetic protein (BMP) family, yet only a small number of direct target genes have been well characterized. In C. elegans, the BMP2/4 ortholog DBL-1 regulates multiple biological functions, including body size, via a canonical receptor-Smad signaling cascade. Here, we identify functional binding sites for SMA-3/Smad and its transcriptional partner SMA-9/Schnurri based on ChIP-seq peaks (identified by modEncode) and expression differences of nearby genes identified from RNA-seq analysis of corresponding mutants. We found that SMA-3 and SMA-9 have both overlapping and unique target genes. At a genome-wide scale, SMA-3/Smad acts as a transcriptional activator, whereas SMA-9/Schnurri direct targets include both activated and repressed genes. Mutations in sma-9 partially suppress the small body size phenotype of sma-3, suggesting some level of antagonism between these factors and challenging the prevailing model for Schnurri function. A functional analysis of target genes revealed a novel role in body size for genes involved in one-carbon metabolism and in the endoplasmic reticulum (ER) secretory pathway, including the disulfide reductase dpy-11. Our findings indicate that Smads and SMA-9/Schnurri have previously unappreciated complex genetic and genomic regulatory interactions that in turn regulate the secretion of extracellular components like collagen into the cuticle to mediate body size regulation.

Article activity feed

  1. eLife assessment

    This study presents valuable findings that will allow for a better understanding of the targets of SMAD and Schnurri, transcription factors that act downstream in the BMP signalling pathway. The evidence presented in this manuscript is solid, but because the claims of a SMA-3/SMA-9 complex are not experimentally supported, they should be toned down. Revising the discussion to give a broader context of BMP-driven body size control would help the readers put this work in a larger context. This work will be of broad interest to colleagues studying BMP signalling across phyla.

  2. Reviewer #1 (Public Review):

    Summary:

    BMP signaling is, arguably, best known for its role in the dorsoventral patterning, but not in nematodes, where it regulates body size. In their paper, Vora et al. analyze ChIP-Seq and RNA-Seq data to identify direct transcriptional targets of SMA-3 (Smad) and SMA-9 (Schnurri) and understand the respective roles of SMA-3 and SMA-9 in the nematode model Caenorhabditis elegans. The authors use publicly available SMA-3 and SMA-9 ChIP-Seq data, own RNA-Seq data from SMA-3 and SMA-9 mutants, and bioinformatic analyses to identify the genes directly controlled by these two transcription factors (TFs) and find approximately 350 such targets for each. They show that all SMA-3-controlled targets are positively controlled by SMA-3 binding, while SMA-9-controlled targets can be either up or downregulated by SMA-9. 129 direct targets were shared by SMA-3 and SMA-9, and, curiously, the expression of 15 of them was activated by SMA-3 but repressed by SMA-9. Since genes responsible for cuticle collagen production were eminent among the SMA-3 targets, the authors focused on trying to understand the body size defect known to be elicited by the modulation of BMP signaling. Vora et al. provide compelling evidence that this defect is likely to be due to problems with the BMP signaling-dependent collagen secretion necessary for cuticle formation.

    Strengths:

    Vora et al. provide a valuable analysis of ChIP-Seq and RNA-Seq datasets, which will be very useful for the community. They also shed light on the mechanism of the BMP-dependent body size control by identifying SMA-3 target genes regulating cuticle collagen synthesis and by showing that downregulation of these genes affects body size in C. elegans.

    Weaknesses:

    (1) Although the analysis of the SMA-3 and SMA-9 ChIP-Seq and RNA-Seq data is extremely useful, the goal "to untangle the roles of Smad and Schnurri transcription factors in the developing C. elegans larva", has not been reached. While the role of SMA-3 as a transcriptional activator appears to be quite straightforward, the function of SMA-9 in the BMP signaling remains obscure. The authors write that in SMA-9 mutants, body size is affected, but they do not show any data on the mechanism of this effect.

    (2) The authors clearly show that both TFs can bind independently of each other, however, by using distances between SMA-3 and SMA-9 ChIP peaks, they claim that when the peaks are close these two TFs act as complexes. In the absence of proof that SMA-3 and SMA-9 physically interact (e.g. that they co-immunoprecipitate - as they do in Drosophila), this is an unfounded claim, which should either be experimentally substantiated or toned down.

    (3) The second part of the paper (the collagen story) is very loosely connected to the first part. dpy-11 encodes an enzyme important for cuticle development, and it is a differentially expressed direct target of SMA-3. dpy-11 can be bound by SMA-9, but it is not affected by this binding according to RNA-Seq. Thus, technically, this part of the paper does not require any information about SMA-9. However, this can likely be improved by addressing the function of the 15 genes, with the opposing mode of regulation by SMA-3 and SMA-9.

    (4) The Discussion does not add much to the paper - it simply repeats the results in a more streamlined fashion.

  3. Reviewer #2 (Public Review):

    In the present study, Vora et al. elucidated the transcription factors downstream of the BMP pathway components Smad and Schnurri in C. elegans and their effects on body size. Using a combination of a broad range of techniques, they compiled a comprehensive list of genome-wide downstream targets of the Smads SMA-3 and SMA-9. They found that both proteins have an overlapping spectrum of transcriptional target sites they control, but also unique ones. Thereby, they also identified genes involved in one-carbon metabolism or the endoplasmic reticulum (ER) secretory pathway. In an elaborate effort, the authors set out to characterize the effects of numerous of these targets on the regulation of body size in vivo as the BMP pathway is involved in this process. Using the reporter ROL-6::wrmScarlet, they further revealed that not only collagen production, as previously shown, but also collagen secretion into the cuticle is controlled by SMA-3 and SMA-9. The data presented by Vora et al. provide in-depth insight into the means by which the BMP pathway regulates body size, thus offering a whole new set of downstream mechanisms that are potentially interesting to a broad field of researchers.

    The paper is mostly well-researched, and the conclusions are comprehensive and supported by the data presented. However, certain aspects need clarification and potentially extended data.

    (1) The BMP pathway is active during development and growth. Thus, it is logical that the data shown in the study by Vora et al. is based on L2 worms. However, it raises the question of if and how the pattern of transcriptional targets of SMA-3 and SMA-9 changes with age or in the male tail, where the BMP pathway also has been shown to play a role. Is there any data to shed light on this matter or are there any speculations or hypotheses?

    (2) As it was shown that SMA-3 and SMA-9 potentially act in a complex to regulate the transcription of several genes, it would be interesting to know whether the two interact with each other or if the cooperation is more indirect.

    (3) It would help the understanding of the data even more if the authors could specifically state if there were collagens among the genes regulated by SMA-3 and SMA-9 and which.

    (4) The data on the role of SMA-3 and SMA-9 in the regulation of the secretion of collagens from the hypodermis is highly intriguing. The authors use ROL-6 as a reporter for the secretion of collagens. Is ROL-6 a target of SMA-9 or SMA-3? Even if this is not the case, the data would gain even more strength if a comparable quantification of the cuticular levels of ROL-6 were shown in Figure 6, and potentially a ratio of cuticular versus hypodermal levels. By that, the levels of secretion versus production can be better appreciated.

    (5) It is known that the BMP pathway controls several processes besides body size. The discussion would benefit from a broader overview of how the identified genes could contribute to body size. The focus of the study is on collagen production and secretion, but it would be interesting to have some insights into whether and how other identified proteins could play a role or whether they are likely to not be involved here (such as the ones normally associated with lipid metabolism, etc.).

  4. Author response:

    Reviewer #1 (Public Review):

    Summary:

    BMP signaling is, arguably, best known for its role in the dorsoventral patterning, but not in nematodes, where it regulates body size. In their paper, Vora et al. analyze ChIP-Seq and RNA-Seq data to identify direct transcriptional targets of SMA-3 (Smad) and SMA-9 (Schnurri) and understand the respective roles of SMA-3 and SMA-9 in the nematode model Caenorhabditis elegans. The authors use publicly available SMA-3 and SMA-9 ChIP-Seq data, own RNA-Seq data from SMA-3 and SMA-9 mutants, and bioinformatic analyses to identify the genes directly controlled by these two transcription factors (TFs) and find approximately 350 such targets for each. They show that all SMA-3-controlled targets are positively controlled by SMA-3 binding, while SMA-9-controlled targets can be either up or downregulated by SMA-9. 129 direct targets were shared by SMA-3 and SMA-9, and, curiously, the expression of 15 of them was activated by SMA-3 but repressed by SMA-9. Since genes responsible for cuticle collagen production were eminent among the SMA-3 targets, the authors focused on trying to understand the body size defect known to be elicited by the modulation of BMP signaling. Vora et al. provide compelling evidence that this defect is likely to be due to problems with the BMP signaling-dependent collagen secretion necessary for cuticle formation.

    We thank the reviewer for this supportive summary. We would like to clarify the status of the publicly available ChIP-seq data. We generated the GFP tagged SMA-3 and SMA‑9 strains and submitted them to be entered into the queue for ChIP-seq processing by the modENCODE (later modERN) consortium. Due to the nature of the consortium’s funding, the data were required to be released publicly upon completion. Nevertheless, we have provided the first comprehensive analysis of these datasets.

    Strengths:

    Vora et al. provide a valuable analysis of ChIP-Seq and RNA-Seq datasets, which will be very useful for the community. They also shed light on the mechanism of the BMP-dependent body size control by identifying SMA-3 target genes regulating cuticle collagen synthesis and by showing that downregulation of these genes affects body size in C. elegans.

    Weaknesses:

    (1) Although the analysis of the SMA-3 and SMA-9 ChIP-Seq and RNA-Seq data is extremely useful, the goal "to untangle the roles of Smad and Schnurri transcription factors in the developing C. elegans larva", has not been reached. While the role of SMA-3 as a transcriptional activator appears to be quite straightforward, the function of SMA-9 in the BMP signaling remains obscure. The authors write that in SMA-9 mutants, body size is affected, but they do not show any data on the mechanism of this effect.

    We thank the reviewer for directing our attention to the lack of clarity about SMA-9’s function. We will revise the text to highlight what this study and others demonstrate about SMA-9’s role in body size. We also plan to analyze additional target genes to deepen our model for how SMA-3 and SMA-9 interact functionally to produce a given transcriptional response.

    (2) The authors clearly show that both TFs can bind independently of each other, however, by using distances between SMA-3 and SMA-9 ChIP peaks, they claim that when the peaks are close these two TFs act as complexes. In the absence of proof that SMA-3 and SMA-9 physically interact (e.g. that they co-immunoprecipitate - as they do in Drosophila), this is an unfounded claim, which should either be experimentally substantiated or toned down.

    A physical interaction between Smads and Schnurri has been amply demonstrated in other systems. The limitation in the previous work is that only a small number of target genes was analyzed. Our goal in this study was to determine how widespread this interaction is on a genomic scale. Our analyses demonstrate for the first time that a Schnurri transcription factor has significant numbers of both Smad-dependent and Smad-independent target genes. We will revise the text to clarify this point.

    (3) The second part of the paper (the collagen story) is very loosely connected to the first part. dpy-11 encodes an enzyme important for cuticle development, and it is a differentially expressed direct target of SMA-3. dpy-11 can be bound by SMA-9, but it is not affected by this binding according to RNA-Seq. Thus, technically, this part of the paper does not require any information about SMA-9. However, this can likely be improved by addressing the function of the 15 genes, with the opposing mode of regulation by SMA-3 and SMA-9.

    We appreciate this suggestion and will clarify how SMA-9 and its target genes contribute to collagen organization and body size regulation.

    (4) The Discussion does not add much to the paper - it simply repeats the results in a more streamlined fashion.

    We thank the reviewer for this suggestion. We will add more context to the Discussion.

    Reviewer #2 (Public Review):

    In the present study, Vora et al. elucidated the transcription factors downstream of the BMP pathway components Smad and Schnurri in C. elegans and their effects on body size. Using a combination of a broad range of techniques, they compiled a comprehensive list of genome-wide downstream targets of the Smads SMA-3 and SMA-9. They found that both proteins have an overlapping spectrum of transcriptional target sites they control, but also unique ones. Thereby, they also identified genes involved in one-carbon metabolism or the endoplasmic reticulum (ER) secretory pathway. In an elaborate effort, the authors set out to characterize the effects of numerous of these targets on the regulation of body size in vivo as the BMP pathway is involved in this process. Using the reporter ROL-6::wrmScarlet, they further revealed that not only collagen production, as previously shown, but also collagen secretion into the cuticle is controlled by SMA-3 and SMA-9. The data presented by Vora et al. provide in-depth insight into the means by which the BMP pathway regulates body size, thus offering a whole new set of downstream mechanisms that are potentially interesting to a broad field of researchers.

    The paper is mostly well-researched, and the conclusions are comprehensive and supported by the data presented. However, certain aspects need clarification and potentially extended data.

    (1) The BMP pathway is active during development and growth. Thus, it is logical that the data shown in the study by Vora et al. is based on L2 worms. However, it raises the question of if and how the pattern of transcriptional targets of SMA-3 and SMA-9 changes with age or in the male tail, where the BMP pathway also has been shown to play a role. Is there any data to shed light on this matter or are there any speculations or hypotheses?

    We agree that these are intriguing questions and we are interested in the roles of transcriptional targets at other developmental stages and in other physiological functions, but these analyses are beyond the scope of the current study.

    (2) As it was shown that SMA-3 and SMA-9 potentially act in a complex to regulate the transcription of several genes, it would be interesting to know whether the two interact with each other or if the cooperation is more indirect.

    A physical interaction between Smads and Schnurri has been amply demonstrated in other systems. Our goal in this study was not to validate this physical interaction, but to analyze functional interactions on a genome-wide scale.

    (3) It would help the understanding of the data even more if the authors could specifically state if there were collagens among the genes regulated by SMA-3 and SMA-9 and which.

    We thank the reviewer for this suggestion and will add the requested information in the text.

    (4) The data on the role of SMA-3 and SMA-9 in the regulation of the secretion of collagens from the hypodermis is highly intriguing. The authors use ROL-6 as a reporter for the secretion of collagens. Is ROL-6 a target of SMA-9 or SMA-3? Even if this is not the case, the data would gain even more strength if a comparable quantification of the cuticular levels of ROL-6 were shown in Figure 6, and potentially a ratio of cuticular versus hypodermal levels. By that, the levels of secretion versus production can be better appreciated.

    rol-6 has been identified as a transcriptional target of this pathway. The level of ROL-6 protein, however, is not changed in sma-3 and sma-9 mutants, indicating that there is post-transcriptional compensation. We will include these data in the revised manuscript.

    (5) It is known that the BMP pathway controls several processes besides body size. The discussion would benefit from a broader overview of how the identified genes could contribute to body size. The focus of the study is on collagen production and secretion, but it would be interesting to have some insights into whether and how other identified proteins could play a role or whether they are likely to not be involved here (such as the ones normally associated with lipid metabolism, etc.).

    We will add this information to the Discussion.