Sensitivity to visual features in inattentional blindness

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    This study presents valuable findings to the field interested in inattentional blindness (IB), reporting that participants indicating no awareness of unexpected stimuli through yes/no questions, still show above-chance sensitivity to specific properties of these stimuli through follow-up forced-choice questions (e.g., its color). The results suggest that this is because participants are conservative and biased to report not noticing in IB. The authors conclude that these results provide evidence for residual perceptual awareness of inattentionally blind stimuli and that therefore these findings cast doubt on the claim that awareness requires attention. Although the samples are large and the analysis protocol novel, the evidence supporting this interpretation is still incomplete, because effect sizes are rather small, the experimental design could be improved and alternative explanations have not been ruled out.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The relation between attention, perception and awareness is among the most fundamental problems in the science of the mind. One of the most striking and well-known phenomena bearing on this question is inattentional blindness (IB; Neisser & Becklen, 1975; Mack & Rock, 1998; Most et al., 2001, 2005). In IB, naïve observers fail to report clearly visible stimuli when their attention is otherwise engaged—famously even missing a gorilla parading before their eyes (Simons & Chabris, 1999). This phenomenon and the research programs it has motivated carry tremendous theoretical significance, both as crucial evidence that awareness requires attention (Cohen et al., 2012; Prinz, 2012; Noah & Mangun, 2020) and as a key tool in seeking the neural correlates of consciousness (Rees et al., 1999; Pitts et al., 2014; Hutchinson, 2019). However, these and other implications critically rest on a notoriously biased measure: asking participants whether they noticed anything unusual (and interpreting negative answers as reflecting a complete lack of perception). Here, in the largest ever set of IB studies, we show that, as a group, inattentionally blind participants can successfully report the location, color and shape of the stimuli they deny noticing. This residual visual sensitivity shows that perceptual information remains accessible in IB. We further show that subjective reports in IB are conservative, by introducing absent trials where no IB stimulus is presented; this approach allows us to show for the first time that observers collectively show a systematic bias to report not noticing in IB—essentially ‘playing it safe’ in reporting their sensitivity. This pair of results is consistent with an alternative hypothesis about IB, namely that inattentionally blind subjects retain some degree of awareness of the stimuli they fail to report. Overall, these data provide the strongest evidence to date of significant residual visual sensitivity in IB. They also challenge the use of inattentional blindness to argue that awareness requires attention.

Article activity feed

  1. eLife Assessment

    This study presents valuable findings to the field interested in inattentional blindness (IB), reporting that participants indicating no awareness of unexpected stimuli through yes/no questions, still show above-chance sensitivity to specific properties of these stimuli through follow-up forced-choice questions (e.g., its color). The results suggest that this is because participants are conservative and biased to report not noticing in IB. The authors conclude that these results provide evidence for residual perceptual awareness of inattentionally blind stimuli and that therefore these findings cast doubt on the claim that awareness requires attention. Although the samples are large and the analysis protocol novel, the evidence supporting this interpretation is still incomplete, because effect sizes are rather small, the experimental design could be improved and alternative explanations have not been ruled out.

  2. Reviewer #1 (Public review):

    Summary:

    In the abstract and throughout the paper, the authors boldly claim that their evidence, from the largest set of data ever collected on inattentional blindness, supports the views that "inattentionally blind participants can successfully report the location, color, and shape of stimuli they deny noticing", "subjects retain awareness of stimuli they fail to report", and "these data...cast doubt on claims that awareness requires attention." If their results were to support these claims, this study would overturn 25+ years of research on inattentional blindness, resolve the rich vs. sparse debate in consciousness research, and critically challenge the current majority view in cognitive science that attention is necessary for awareness.

    Unfortunately, these extraordinary claims are not supported by extraordinary (or even moderately convincing) evidence. At best, the results support the more modest conclusion: If sub-optimal methods are used to collect retrospective reports, inattentional blindness rates will be overestimated by up to ~8% (details provided below in comment #1). This evidence-based conclusion means that the phenomenon of inattentional blindness is alive and well as it is even robust to experiments that were specifically aimed at falsifying it. Thankfully, improved methods already exist for correcting the ~8% overestimation of IB rates that this study successfully identified.

    Comments:

    (1) In experiment 1, data from 374 subjects were included in the analysis. As shown in figure 2b, 267 subjects reported noticing the critical stimulus and 107 subjects reported not noticing it. This translates to a 29% IB rate, if we were to only consider the "did you notice anything unusual Y/N" question. As reported in the results text (and figure 2c), when asked to report the location of the critical stimulus (left/right), 63.6% of the "non-noticer" group answered correctly. In other words, 68 subjects were correct about the location while 39 subjects were incorrect. Importantly, because the location judgment was a 2-alternative-forced-choice, the assumption was that if 50% (or at least not statistically different than 50%) of the subjects answered the location question correctly, everyone was purely guessing. Therefore, we can estimate that ~39 of the subjects who answered correctly were simply guessing (because 39 guessed incorrectly), leaving 29 subjects from the non-noticer group who may have indeed actually seen the location of the stimulus. If these 29 subjects are moved to the noticer group, the corrected rate of IB for experiment 1 is 21% instead of 29%. In other words, relying only on the "Y/N did you notice anything" question leads to an overestimate of IB rates by 8%. This modest level of inaccuracy in estimating IB rates is insufficient for concluding that "subjects retain awareness of stimuli they fail to report", i.e. that inattentional blindness does not exist.

    In addition, this 8% inaccuracy in IB rates only considers one side of the story. Given the data reported for experiment 1, one can also calculate the number of subjects who answered "yes, I did notice something unusual" but then reported the incorrect location of the critical stimulus. This turned out to be 8 subjects (or 3% of the "noticer" group). Some would argue that it's reasonable to consider these subjects as inattentionally blind, since they couldn't even report where the critical stimulus they apparently noticed was located. If we move these 8 subjects to the non-noticer group, the 8% overestimation of IB rates is reduced to 6%.

    The same exercise can and should be carried out on the other 4 experiments, however, the authors do not report the subject numbers for any of the other experiments, i.e., how many subjects answered Y/N to the noticing question and how many in each group correctly answered the stimulus feature question. From the limited data reported (only total subject numbers and d' values), the effect sizes in experiments 2-5 were all smaller than in experiment 1 (d' for the non-noticer group was lower in all of these follow-up experiments), so it can be safely assumed that the ~6-8% overestimation of IB rates was smaller in these other four experiments. In a revision, the authors should consider reporting these subject numbers for all 5 experiments.

    (2) Because classic IB paradigms involve only one critical trial per subject, the authors used a "super subject" approach to estimate sensitivity (d') and response criterion (c) according to signal detection theory (SDT). Some readers may have issues with this super subject approach, but my main concern is with the lack of precision used by the authors when interpreting the results from this super subject analysis.

    Only the super subject had above-chance sensitivity (and it was quite modest, with d' values between 0.07 and 0.51), but the authors over-interpret these results as applying to every subject. The methods and analyses cannot determine if any individual subject could report the features above-chance. Therefore, the following list of quotes should be revised for accuracy or removed from the paper as they are misleading and are not supported by the super subject analysis:

    "Altogether this approach reveals that subjects can report above-chance the features of stimuli (color, shape, and location) that they had claimed not to notice under traditional yes/no questioning" (p.6)

    "In other words, nearly two-thirds of subjects who had just claimed not to have noticed any additional stimulus were then able to correctly report its location." (p.6)

    "Even subjects who answer "no" under traditional questioning can still correctly report various features of the stimulus they just reported not having noticed, suggesting that they were at least partially aware of it after all." (p.8)

    "Why, if subjects could succeed at our forced-response questions, did they claim not to have noticed anything?" (p.8)

    "we found that observers could successfully report a variety of features of unattended stimuli, even when they claimed not to have noticed these stimuli." (p.14)

    "our results point to an alternative (and perhaps more straightforward) explanation: that inattentionally blind subjects consciously perceive these stimuli after all... they show sensitivity to IB stimuli because they can see them." (p.16)

    "In other words, the inattentionally blind can see after all." (p.17)

    (3) In addition to the d' values for the super subject being slightly above zero, the authors attempted an analysis of response bias to further question the existence of IB. By including in some of their experiments critical trials in which no critical stimulus was presented, but asking subjects the standard Y/N IB question anyway, the authors obtained false alarm and correct rejection rates. When these FA/CR rates are taken into account along with hit/miss rates when critical stimuli were presented, the authors could calculate c (response criterion) for the super subject. Here, the authors report that response criteria are biased towards saying "no, I didn't notice anything". However, the validity of applying SDT to classic Y/N IB questioning is questionable.

    For example, with the subject numbers provided in Box 1 (the 2x2 table of hits/misses/FA/CR), one can ask, 'how many subjects would have needed to answer "yes, I noticed something unusual" when nothing was presented on the screen in order to obtain a non-biased criterion estimate, i.e., c = 0?' The answer turns out to be 800 subjects (out of the 2761 total subjects in the stimulus-absent condition), or 29% of subjects in this condition.

    In the context of these IB paradigms, it is difficult to imagine 29% of subjects claiming to have seen something unusual when nothing was presented. Here, it seems that we may have reached the limits of extending SDT to IB paradigms, which are very different than what SDT was designed for. For example, in classic psychophysical paradigms, the subject is asked to report Y/N as to whether they think a threshold-level stimulus was presented on the screen, i.e., to detect a faint signal in the noise. Subjects complete many trials and know in advance that there will often be stimuli presented and the stimuli will be very difficult to see. In those cases, it seems more reasonable to incorrectly answer "yes" 29% of the time, as you are trying to detect something very subtle that is out there in the world of noise. In IB paradigms, the stimuli are intentionally designed to be highly salient (and unusual), such that with a tiny bit of attention they can be easily seen. When no stimulus is presented and subjects are asked about their own noticing (especially of something unusual), it seems highly unlikely that 29% of them would answer "yes", which is the rate of FAs that would be needed to support the null hypothesis here, i.e., of a non-biased criterion. For these reasons, the analysis of response bias in the current context is questionable and the results claiming to demonstrate a biased criterion do not provide convincing evidence against IB.

    (4) One of the strongest pieces of evidence presented in the entire paper is the single data point in Figure 3e showing that in Experiment 3, even the super subject group that rated their non-noticing as "highly confident" had a d' score significantly above zero. Asking for confidence ratings is certainly an improvement over simple Y/N questions about noticing, and if this result were to hold, it could provide a key challenge to IB. However, this result hinges on a single data point, it was not replicated in any of the other 4 experiments, and it can be explained by methodological limitations. I strongly encourage the authors (and other readers) to follow up on this result, in an in-person experiment, with improved questioning procedures.

    In the current Experiment 3, the authors asked the standard Y/N IB question, and then asked how confident subjects were in their answer. Asking back-to-back questions, the second one with a scale that pertains to the first one (including a tricky inversion, e.g., "yes, I am confident in my answer of no"), may be asking too much of some subjects, especially subjects paying half-attention in online experiments. This procedure is likely to introduce a sizeable degree of measurement error.

    An easy fix in a follow-up study would be to ask subjects to rate their confidence in having noticed something with a single question using an unambiguous scale:

    On the last trial, did you notice anything besides the cross?

    (1) I am highly confident I didn't notice anything else
    (2) I am confident I didn't notice anything else
    (3) I am somewhat confident I didn't notice anything else
    (4) I am unsure whether I noticed anything else
    (5) I am somewhat confident I noticed something else
    (6) I am confident I noticed something else
    (7) I am highly confident I noticed something else

    If we were to re-run this same experiment, in the lab where we can better control the stimuli and the questioning procedure, we would most likely find a d' of zero for subjects who were confident or highly confident (1-2 on the improved scale above) that they didn't notice anything. From there on, the d' values would gradually increase, tracking along with the confidence scale (from 3-7 on the scale). In other words, we would likely find a data pattern similar to that plotted in Figure 3e, but with the first data point on the left moving down to zero d'. In the current online study with the successive (and potentially confusing) retrospective questioning, a handful of subjects could have easily misinterpreted the confidence scale (e.g., inverting the scale) which would lead to a mixture of genuine high-confidence ratings and mistaken ratings, which would result in a super subject d' that falls between zero and the other extreme of the scale (which is exactly what the data in Fig 3e shows).

    One way to check on this potential measurement error using the existing dataset would be to conduct additional analyses that incorporate the confidence ratings from the 2AFC location judgment task. For example, were there any subjects who reported being confident or highly confident that they didn't see anything, but then reported being confident or highly confident in judging the location of the thing they didn't see? If so, how many? In other words, how internally (in)consistent were subjects' confidence ratings across the IB and location questions? Such an analysis could help screen-out subjects who made a mistake on the first question and corrected themselves on the second, as well as subjects who weren't reading the questions carefully enough. As far as I could tell, the confidence rating data from the 2AFC location task were not reported anywhere in the main paper or supplement.

    (5) In most (if not all) IB experiments in the literature, a partial attention and/or full attention trial (or set of trials) is administered after the critical trial. These control trials are very important for validating IB on the critical trial, as they must show that, when attended, the critical stimuli are very easy to see. If a subject cannot detect the critical stimulus on the control trial, one cannot conclude that they were inattentionally blind on the critical trial, e.g., perhaps the stimulus was just too difficult to see (e.g., too weak, too brief, too far in the periphery, too crowded by distractor stimuli, etc.), or perhaps they weren't paying enough attention overall or failed to follow instructions. In the aggregate data, rates of noticing the stimuli should increase substantially from the critical trial to the control trials. If noticing rates are equivalent on the critical and control trials one cannot conclude that attention was manipulated.

    It is puzzling why the authors decided not to include any control trials with partial or full attention in their five experiments, especially given their online data collection procedures where stimulus size, intensity, eccentricity, etc. were uncontrolled and variable across subjects. Including such trials could have actually helped them achieve their goal of challenging the IB hypothesis, e.g., excluding subjects who failed to see the stimulus on the control trials might have reduced the inattentional blindness rates further. This design decision should at least be acknowledged and justified (or noted as a limitation) in a revision of this paper.

    (6) In the discussion section, the authors devote a short paragraph to considering an alternative explanation of their non-zero d' results in their super subject analyses: perhaps the critical stimuli were processed unconsciously and left a trace such that when later forced to guess a feature of the stimuli, subjects were able to draw upon this unconscious trace to guide their 2AFC decision. In the subsequent paragraph, the authors relate these results to above-chance forced-choice guessing in blindsight subjects, but reject the analogy based on claims of parsimony.

    First, the authors dismiss the comparison of IB and blindsight too quickly. In particular, the results from experiment 3, in which some subjects adamantly (confidently) deny seeing the critical stimulus but guess a feature at above-chance levels (at least at the super subject level and assuming the online subjects interpreted and used the confidence scale correctly), seem highly analogous to blindsight. Importantly, the analogy is strengthened if the subjects who were confident in not seeing anything also reported not being confident in their forced-choice judgments, but as mentioned above this data was not reported.

    Second, the authors fail to mention an even more straightforward explanation of these results, which is that ~8% of subjects misinterpreted the "unusual" part of the standard IB question used in experiments 1-3. After all, colored lines and shapes are pretty "usual" for psychology experiments and were present in the distractor stimuli everyone attended to. It seems quite reasonable that some subjects answered this first question, "no, I didn't see anything unusual", but then when told that there was a critical stimulus and asked to judge one of its features, adjusted their response by reconsidering, "oh, ok, if that's the unusual thing you were asking about, of course I saw that extra line flash on the left of the screen". This seems like a more parsimonious alternative compared to either of the two interpretations considered by the authors: (1) IB does not exist, (2) super-subject d' is driven by unconscious processing. Why not also consider: (3) a small percentage of subjects misinterpreted the Y/N question about noticing something unusual. In experiments 4-5, they dropped the term "unusual" but do not analyze whether this made a difference nor do they report enough of the data (subject numbers for the Y/N question and 2AFC) for readers to determine if this helped reduce the ~8% overestimate of IB rates.

    (7) The authors use sub-optimal questioning procedures to challenge the existence of the phenomenon this questioning is intended to demonstrate. A more neutral interpretation of this study is that it is a critique on methods in IB research, not a critique on IB as a manipulation or phenomenon. The authors neglect to mention the dozens of modern IB experiments that have improved upon the simple Y/N IB questioning methods. For example, in Michael Cohen's IB experiments (e.g., Cohen et al., 2011; Cohen et al., 2020; Cohen et al., 2021), he uses a carefully crafted set of probing questions to conservatively ensure that subjects who happened to notice the critical stimuli have every possible opportunity to report seeing them. In other experiments (e.g., Hirschhorn et al., 2024; Pitts et al., 2012), researchers not only ask the Y/N question but then follow this up by presenting examples of the critical stimuli so subjects can see exactly what they are being asked about (recognition-style instead of free recall, which is more sensitive). These follow-up questions include foil stimuli that were never presented (similar to the stimulus-absent trials here), and ask for confidence ratings of all stimuli. Conservative, pre-defined exclusion criteria are employed to improve the accuracy of their IB-rate estimates. In these and other studies, researchers are very cautious about trusting what subjects report seeing, and in all cases, still find substantial IB rates, even to highly salient stimuli. The authors should consider at least mentioning these improved methods, and perhaps consider using some of them in their future experiments.

  3. Reviewer #2 (Public review):

    In this study, Nartker et al. examine how much observers are conscious of using variations of classic inattentional blindness studies. The key idea is that rather than simply asking observers if they noticed a critical object with one yes/no question, the authors also ask follow-up questions to determine if observers are aware of more than the yes/no questions suggest. Specifically, by having observers make forced choice guesses about the critical object, the authors find that many observers who initially said "no" they did not see the object can still "guess" above chance about the critical object's location, color, etc. Thus, the authors claim, that prior claims of inattentional blindness are mistaken and that using such simple methods has led numerous researchers to overestimate how little observers see in the world. To quote the authors themselves, these results imply that "inattentionally blind subjects consciously perceive these stimuli after all... they show sensitivity to IB stimuli because they can see them."

    Before getting to a few issues I have with the paper, I do want to make sure to explicitly compliment the researchers for many aspects of their work. Getting massive amounts of data, using signal detection measures, and the novel use of a "super subject" are all important contributions to the literature that I hope are employed more in the future.

    Main point 1: My primary issue with this work is that I believe the authors are misrepresenting the way people often perform inattentional blindness studies. In effect, the authors are saying, "People do the studies 'incorrectly' and report that people see very little. We perform the studies 'correctly' and report that people see much more than previously thought." But the way previous studies are conducted is not accurately described in this paper. The authors describe previous studies as follows on page 3:

    "Crucially, however, this interpretation of IB and the many implications that follow from it rest on a measure that psychophysics has long recognized to be problematic: simply asking participants whether they noticed anything unusual. In IB studies, awareness of the unexpected stimulus (the novel shape, the parading gorilla, etc.) is retroactively probed with a yes/no question, standardly, "Did you notice anything unusual on the last trial which wasn't there on previous trials?". Any subject who answers "no" is assumed not to have any awareness of the unexpected stimulus.

    If this quote were true, the authors would have a point. Unfortunately, I do not believe it is true. This is simply not how many inattentional blindness studies are run. Some of the most famous studies in the inattentional blindness literature do not simply as observes a yes/no question (e.g., the invisible gorilla (Simons et al. 1999), the classic door study where the person changes (Simons and Levin, 1998), the study where observers do not notice a fight happening a few feet from them (Chabris et al., 2011). Instead, these papers consistently ask a series of follow-up questions and even tell the observers what just occurred to confirm that observers did not notice that critical event (e.g., "If I were to tell you we just did XYZ, did you notice that?"). In fact, after a brief search on Google Scholar, I was able to relatively quickly find over a dozen papers that do not just use a yes/no procedure, and instead as a series of multiple questions to determine if someone is inattentionally blind. In no particular order some papers (full disclosure: including my own):

    (1) Most et al. (2005) Psych Review
    (2) Drew et al. (2013) Psych Science
    (3) Drew et al. (2016) Journal of Vision
    (4) Simons et al. (1999) Perception
    (5) Simons and Levin (1998) Perception
    (6) Chabris et al. (2011) iPerception
    (7) Ward & Scholl (2015) Psych Bulletin and Review
    (8) Most et al. (2001) Psych Science
    (9) Todd & Marois (2005) Psych Science
    (10) Fougnie & Marois (2007) Psych Bulletin and Review
    (11) New and German (2015) Evolution and Human Behaviour
    (12) Jackson-Nielsen (2017) Consciousness and cognition
    (13) Mack et al. (2016) Consciousness and cognition
    (14) Devue et al. (2009) Perception
    (15) Memmert (2014) Cognitive Development
    (16) Moore & Egeth (1997) JEP:HPP
    (17) Cohen et al. (2020) Proc Natl Acad Sci
    (18). Cohen et al. (2011) Psych Science

    This is a critical point. The authors' key idea is that when you ask more than just a simple yes/no question, you find that other studies have overestimated the effects of inattentional blindness. But none of the studies listed above only asked simple yes/no questions. Thus, I believe the authors are mis-representing the field. Moreover, many of the studies that do much more than ask a simple yes/no question are cited by the authors themselves! Furthermore, as far as I can tell, the authors believe that if researchers do these extra steps and ask more follow-ups, then the results are valid. But since so many of these prior studies do those extra steps, I am not exactly sure what is being criticized.

    To make sure this point is clear, I'd like to use a paper of mine as an example. In this study (Cohen et al., 2020, Proc Natl Acad Sci USA) we used gaze-contingent virtual reality to examine how much color people see in the world. On the critical trial, the part of the scene they fixated on was in color, but the periphery was entirely in black and white. As soon as the trial ended, we asked participants a series of questions to determine what they noticed. The list of questions included:

    (1) "Did you notice anything strange or different about that last trial?"
    (2) "If I were to tell you that we did something odd on the last trial, would you have a guess as to what we did?"
    (3) "If I were to tell you we did something different in the second half of the last trial, would you have a guess as to what we did?"
    (4) "Did you notice anything different about the colors in the last scene?"
    (5) We then showed observers the previous trial again and drew their attention to the effect and confirmed that they did not notice that previously.
    In a situation like this, when the observers are asked so many questions, do the authors believe that "the inattentionally blind can see after all?" I believe they would not say that and the reason they would not say that is because of the follow-up questions after the initial yes/no question. But since so many previous studies use similar follow-up questions, I do not think you can state that the field is broadly overestimating inattentional blindness. This is why it seems to me to be a bit of a straw-man: most people do not just use the yes/no method.

    Main point 2: Let's imagine for a second that every study did just ask a yes/no question and then would stop. So, the criticism the authors are bringing up is valid (even though I believe it is not). I am not entirely sure that above chance performance on a forced choice task proves that the inattentionally blind can see after all. Could it just be a form of subliminal priming? Could there be a significant number of participants who basically would say something like, "No I did not see anything, and I feel like I am just guessing, but if you want me to say whether the thing was to the left or right, I will just 100% guess"? I know the literature on priming from things like change and inattentional blindness is a bit unclear, but this seems like maybe what is going on. In fact, maybe the authors are getting some of the best priming from inattentional blindness because of their large sample size, which previous studies do not use.
    I'm curious how the authors would relate their studies to masked priming. In masked priming studies, observers say the did not see the target (like in this study) but still are above chance when forced to guess (like in this study). Do the researchers here think that that is evidence of "masked stimuli are truly seen" even if a participant openly says they are guessing?

    Main point 3: My last question is about how the authors interpret a variety of inattentional blindness findings. Previous work has found that observers fail to notice a gorilla in a CT scan (Drew et al., 2013), a fight occurring right in front of them (Chabris et al., 2011), a plane on a runway that pilots crash into (Haines, 1991), and so forth. In a situation like this, do the authors believe that many participants are truly aware of these items but simply failed to answer a yes/no question correctly? For example, imagine the researchers made participants choose if the gorilla was in the left or right lung and some participants who initially said they did not notice the gorilla were still able to correctly say if it was in the left or right lung. Would the authors claim "that participant actually did see the gorilla in the lung"? I ask because it is difficult to understand what it means to be aware of something as salient as a gorilla in a CT scan, but say "no" you didn't notice it when asked a yes/no question. What does it mean to be aware of such important, ecologically relevant stimuli, but not act in response to them and openly say "no" you did not notice them?

    Overall: I believe there are many aspects of this set of studies that are innovative and I hope the methods will be used more broadly in the literature. However, I believe the authors misrepresent the field and overstate what can be interpreted from their results. While I am sure there are cases where more nuanced questions might reveal inattentional blindness is somewhat overestimated, claims like "the inattentionally blind can see after all" or "Inattentionally blind subjects consciously perceive thest stimuli after all" seem to be incorrect (or at least not at all proven by this data).

  4. Reviewer #3 (Public review):

    Summary:

    Authors try to challenge the mainstream scientific as well as popularly held view that Inattentional Blindness (IB) signifies subjects having no conscious awareness of what they report not seeing (after being exposed to unexpected stimuli). They show that even when subjects indicate NOT having seen the unexpected stimulus, they are at above chance level for reporting features such as location, color or movement of these stimuli. Also, they show that 'not seen' responses are in part due to a conservative bias of subjects, i.e. they tend to say no more than yes, regardless of actual visibility. Their conclusion is that IB may not (always) be blindness, but possibly amnesia, uncertainty etc.

    Strengths:

    A huge pool of (25.000) subjects is used. They perform several versions of the IB experiments, both with briefly presented stimuli (as the classic Mack and Rock paradigm), as well as with prolonged stimuli moving over the screen for 5 seconds (a bit like the famous gorilla version), and all these versions show similar results, pointing in the same direction: above chance detection of unseen features, as well as conservative bias towards saying not seen.

    Weaknesses:

    Results are all significant but effects are not very strong, typically a bit above chance. Also, it is unclear what to compare these effects to, as there are no control experiments showing what performance would have been in a dual task version where subjects have to also report features etc for stimuli that they know will appear in some trials

    There are quite some studies showing that during IB, neural processing of visual stimuli continues up to high visual levels, for example, Vandenbroucke et al 2014 doi:10.1162/jocn_a_00530 showed preserved processing of perceptual inference (i.e. seeing a kanizsa illusion) during IB. Scholte et al 2006 doi: 10.1016/j.brainres.2005.10.051 showed preserved scene segmentation signals during IB. Compared to the strength of these neural signatures, the reported effects may be considered not all that surprising, or even weak.