Spatial integration of sensory input and motor output in Pseudomonas aeruginosa chemotaxis through colocalized distribution

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The opportunistic pathogen Pseudomonas aeruginosa serves as a model organism for studying multiple signal transduction pathways. The chemoreceptor cluster, a core component of the chemotaxis pathway, is assembled from hundreds of proteins. The unipolar distribution of receptor clusters has long been recognized, yet the precise mechanism governing their assembly remains elusive. Here, we directly observed the relative positions of the flagellar motor and chemoreceptor cluster using flagellar filament labeling and gene editing techniques. Surprisingly, we found that both are located at the same cell pole, with the distribution pattern controlled by the polar anchor protein FlhF. Additionally, the efficient assembly of the chemoreceptor cluster is partially dependent on the integrity of the motor structure. Furthermore, we discovered that overexpression of the chemotaxis regulatory protein CheY leads to high intracellular levels of the second messenger c-di-GMP, triggering cell aggregation. Therefore, the colocalization of the chemoreceptor cluster and flagellum in P. aeruginosa serves to avoid cross-pathway signaling interference, enabling cells to conduct various physiological activities in an orderly manner.

Article activity feed