Optogenetic silencing hippocampal inputs to the retrosplenial cortex causes a prolonged disruption of spatial working memory

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    The authors report that optogenetic inhibition of hippocampal axon terminals in retrosplenial cortex impairs the performance of a delayed non-match to place task. The significance of findings elucidating the role of hippocampal projections to the retrosplenial cortex in memory and decision-making behaviors is important. However, the strength of evidence for the paper's claims is currently incomplete.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Working memory allows us to keep information in memory for the time needed to perform a given task. Such fundamental cognitive ability relies on a neural circuit including the retrosplenial cortex (RSC), connected to several cortical areas, functionally and anatomically, namely primary visual areas, and higher cognitive areas such as the cingulate, midcingulate, and subicular cortices. RSC bears intimate anatomical and functional connections with the hippocampus, and has been implicated in integrating and translating spatial-temporal contextual information between ego- and allocentric reference frames, to compute predictions about goals in goal-directed behaviors. The relative contribution of the hippocampus and retrosplenial cortex in working memory-guided behaviors remains unclear due to the lack of studies reversibly interfering with synapses connecting the two regions during such behaviors. We here used eArch3.0, a hyperpolarizing proton pump, to silence hippocampal axon terminals in RSC while animals perform a standard delayed non-match to place task. We found that such manipulation impairs memory retrieval, significantly decreasing performance and hastening decision-making. Furthermore, we found that such impairment outlasts light-activation of the opsin, its effects being noticed up to 3 subsequent trials.

Article activity feed

  1. Author Response

    eLife assessment

    The authors report that optogenetic inhibition of hippocampal axon terminals in retrosplenial cortex impairs the performance of a delayed non-match to place task. The significance of findings elucidating the role of hippocampal projections to the retrosplenial cortex in memory and decision-making behaviors is important. However, the strength of evidence for the paper's claims is currently incomplete.

    Public Reviews:

    Reviewer #1 (Public Review):

    Summary:

    This is a study on the role of the retrosplenial cortex (RSC) and the hippocampus in working memory. Working memory is a critical cognitive function that allows temporary retention of information for task execution. The RSC, which is functionally and anatomically connected to both primary sensory (especially visual) and higher cognitive areas, plays a key role in integrating spatial-temporal context and in goal-directed behaviors. However, the specific contributions of the RSC and the hippocampus in working memory-guided behaviors are not fully understood due to a lack of studies that experimentally disrupt the connection between these two regions during such behaviors.

    In this study, researchers employed eArch3.0 to silence hippocampal axon terminals in the RSC, aiming to explore the roles of these brain regions in working memory. Experiments were conducted where animals with silenced hippocampal axon terminals in the RSC performed a delayed non-match to place (DNMP) task. The results indicated that this manipulation impaired memory retrieval, leading to decreased performance and quicker decision-making in the animals. Notably, the authors observed that the effects of this impairment persisted beyond the light-activation period of the opsin, affecting up to three subsequent trials. They suggest that disrupting the hippocampal-RSC connection has a significant and lasting impact on working memory performance.

    Strengths:

    They conducted a study exploring the impact of direct hippocampal inputs into the RSC, a region involved in encoding spatial-temporal context and transferring contextual information, on spatial working memory tasks. Utilizing eArch3.0 expressed in hippocampal neurons via the viral vector AAV5-hSyn1-eArch3.0, they aimed to bilaterally silence hippocampal terminals located at the RSC in rats pre-trained in a DNMP task. They discovered that silencing hippocampal terminals in the RSC significantly decreased working memory performance in eArch+ animals, especially during task interleaving sessions (TI) that alternated between trials with and without light delivery. This effect persisted even in non-illuminated trials, indicating a lasting impact beyond the periods of direct manipulation. Additionally, they observed a decreased likelihood of correct responses following TI trials and an increased error rate in eArch+ animals, even after incorrect responses, suggesting an impairment in error-corrective behavior. This contrasted with baseline sessions where no light was delivered, and both eArch+ and control animals showed low error rates.

    Weaknesses:

    While I agree with the authors that the role of hippocampal inputs to the RSC in spatial working memory is understudied and merits further investigation, I find that the optogenetic experiment, a core part of this manuscript that includes viral injections, could be improved. The effects were rather subtle, rendering some of the results barely significant and possibly too weak to support major conclusions.

    We thank Reviewer#1 for carefully and critically reading our manuscript, and for the valuable comments provided. The judged “subtlety” of the effects stems from a perspective according to which a quantitatively lower effect bears less biological significance for cognition. We disagree with this perspective and find it rather reductive for several reasons.

    Once seen in the context of the animal’s ecology, subtle impairments can be life-threatening precisely because of their subtlety, leading the animal to confidently rely on a defective capacity, for such events as remembering the habitual location of a predator, or food source.

    Also, studies in animal cognition often undertake complete, rather than graded, suppression of a given mechanism (in the same sense as that of “knocking out” a gene that is relevant for behaviour), leading to a gravelly, rather that gradually, impaired model system, to the point of not allowing a hypothetical causal link to be mechanistically revealed beyond its mere presence. This often hinders a thorough interpretation of the perturbed factor’s role. If a caricatural analogy is allowed, it would be as if we were to study the role of an animal’s legs by chopping them both off and observing the resulting behaviour.

    In our study we conclude that silencing HIPP inputs in RSC perturbs cognition enough to impair behaviour while not disabling the animal entirely, as such allowing for behaviour to proceed, and for our observation of graded, decreased (not absent), proficiency under optogenetic silencing. So rather than weak, we would say the results are statistically significant, and biologically realistic.

    Additionally, no mechanistic investigation was conducted beyond referencing previous reports to interpret the core behavioral phenotypes.

    We fully agree with this being a weakness, as we wish we could have done more mechanistic studies to find out exactly what is Arch activation doing to HIPP-RSC transmission, which neurons are being affected, and perhaps in the future dissect its circuit determinants. We have all these goals very present and hope we can address them soon.

    Reviewer #2 (Public Review):

    The authors examine the impact of optogenetic inhibition of hippocampal axon terminals in the retrosplenial cortex (RSP) during the performance of a working memory T-maze task. Performance on a delayed non-match-to-place task was impaired by such inhibition. The authors also report that inhibition is associated with faster decision-making and that the effects of inhibition can be observed over several subsequent trials. The work seems reasonably well done and the role of hippocampal projections to retrosplenial cortex in memory and decision-making is very relevant to multiple fields. However, the work should be expanded in several ways before one can make firm conclusions on the role of this projection in memory and behavior.

    We thank Reviewer#2 for carefully and critically reading our manuscript, and for the valuable comments provided.

    (1) The work is very singular in its message and the experimentation. Further, the impact of the inhibition on behaviour is very moderate. In this sense, the results do not support the conclusion that the hippocampal projection to retrosplenial cortex is key to working memory in a navigational setting.

    As we have mentioned in response to Reviewer#1, the judged “very moderate” effect stems from a perspective according to which a quantitatively lower effect bears less biological significance for cognition, precluding its consideration as “key” for behaviour. We disagree with this perspective and find it rather reductive for several reasons. Once seen in the context of the animal’s ecology, quantitatively lower impairments in working memory are no less key for this cognitive capacity, and can be life-threatening precisely because of their subtlety, leading the animal to confidently rely on a defective capacity, for such events as remembering the habitual location of a predator, or food source. Furthermore, studies in animal cognition often undertake complete, rather than graded, suppression of a given mechanism (in the same sense as “knocking out” a gene that is relevant for behaviour), leading to a gravelly, rather that gradually, impaired model system, to the point of not allowing a hypothetical causal link to be mechanistically revealed beyond its mere presence. This often hinders a thorough interpretation of its role.

    In our study we conclude that silencing HIPP inputs in RSC perturbs behaviour enough to impair behaviour while not disabling the animal entirely, as such allowing for behaviour to proceed, and our observation of graded, decreased (not absent), proficiency under optogenetic silencing. So rather than weak, we would say the results are statistically significant, and biologically realistic.

    (2) There are no experiments examining other types of behavior or working memory. Given that the animals used in the studies could be put through a large number of different tasks, this is surprising. There is no control navigational task. There is no working memory test that is non-spatial. Such results should be presented in order to put the main finding in context.

    It is hard to gainsay this point. The more thorough and complete a behavioural characterization is, the more informative is the study, from every angle you look at it. While we agree that other forms of WM would be quite interesting in this context, we also cannot ignore the fact that DNMP is widely tested as a WM task, one that is biologically plausible, sensitive to perturbations of neural circuitry know to be at play therein, and fully accepted in the field. Faced with the impossibility of running further studies, for lack of additional funding and human resources, we chose to run this task.

    A control navigational task would, in our understanding, be used to assess whether silencing HIPP projections to RSC would affect (spatial?) navigation, rather than WM, thus explaining the observed impairment. To this we have the following to say: Spatial Navigation is a very basic cognitive function, one that relies on body orientation relative to spatial context, on keeping an updated representation of such spatial context, (“alas”, as memory), and on guiding behaviour according to acquired knowledge about spatial context. Some of these functions are integral to spatial working memory, as such, they might indeed be affected.

    Dissecting the determinants of spatial WM is indeed an ongoing effort, one that was not the intention of the current study, but also one that we have very present, in hope we can address in the future.

    A non-spatial WM task would indeed vastly solidify our claims beyond spatial WM, onto WM. We have, for this reason, changed the title of the manuscript which now reads “spatial working memory”.

    (3) The actual impact of the inhibition on activity in RSP is not provided. While this may not be strictly necessary, it is relevant that the hippocampal projection to RSP includes, and is perhaps dominated by inhibitory inputs. I wonder why the authors chose to manipulate hippocampal inputs to RSP when the subiculum stands as a much stronger source of afferents to RSP and has been shown to exhibit spatial and directional tuning of activity. The points here are that we cannot be sure what the manipulation is really accomplishing in terms of inhibiting RSP activity (perhaps this explains the moderate impact on behavior) and that the effect of inhibiting hippocampal inputs is not an effective means by which to study how RSP is responsive to inputs that reflect environmental locations.

    We fully agree that neural recordings addressing the effect of silencing on RSC neural activity is relevant. We do wish we could have provided more mechanistic studies, to find out exactly what is Arch activation doing to HIPP-RSC transmission, which neurons are being affected, and thus dissecting its circuit determinants. We have all these goals very present and hope we can address them soon. Subiculum, which we mention in the Introduction, is indeed a key player in this complex circuitry, one whose hypothetical influence is the subject of experimental studies which will certainly reveal many other key elements.

    (4) The impact of inhibition on trials subsequent to the trial during which optical stimulation was actually supplied seems trivial. The authors themselves point to evidence that activation of the hyperpolarizing proton pump is rather long-lasting in its action. Further, each sample-test trial pairing is independent of the prior or subsequent trials. This finding is presented as a major finding of the work, but would normally be relegated to supplemental data as an expected outcome given the dynamics of the pump when activated.

    We disagree that this finding is “trivial”, and object to the considerations of “normalcy”, which we are left wondering about.

    In lack of neurophysiological experiments (for the reasons stated above) to address this interesting finding, we chose to interpret it in light of (the few) published observations, such being the logical course of action in scientific reporting, given the present circumstances.

    Evidence for such a prolonged effect in the context of behaviour is scarce (to our knowledge only the one we cite in the manuscript). As such, it is highly relevant to report it, and give it the relevance we do in our manuscript, rather than “relegating it to supplementary data”, as the reviewer considers being “normal”.

    In the DNMP task the consecutive sample-test pairs are explicitly not independent, as they are part of the same behavioural session. This is illustrated by the simple phenomenon of learning, namely the intra-session learning curves, and the well-known behavioral trial-history effects. The brain does not simply erase such information during the ITI.

    (5) In the middle of the first paragraph of the discussion, the authors make reference to work showing RSP responses to "contextual information in egocentric and allocentric reference frames". The citations here are clearly deficient. How is the Nitzan 2020 paper at all relevant here?

    Nitzan 2020 reports the propagation of information from HIPP to CTX via SUB and RSC, thus providing a conduit for mnemonic information between the two structures, alternative to the one we target, thus providing thorough information concerning the HIPP-RSC circuitry at play during behaviour.

    Alexander and Nitz 2015 precisely cite the encoding, and conjunction, of two types of contextual information, internal (ego-) and external (allocentric).

    The subsequent reference is indeed superfluous here.

    We thank the Reviewer#2 for calling our attention to the fact that references for this information are inadequate and lacking. We have now cited (Gill et al., 2011; Miller et al., 2019; Vedder et al., 2017) and refer readers to the review (Alexander et al., 2023) for the purpose of illustrating the encoding of information in the two reference frames. In addition, we have substantially edited the Introduction and Discussion sections, and suppressed unnecessary passages.

    (6) The manuscript is deficient in referencing and discussing data from the Smith laboratory that is similar. The discussion reads mainly like a repeat of the results section.

    Please see above. We thank Reviewer#2 for this comment, we have now re-written the Discussion such that it is less of a summary of the Results and more focused on their implications and future directions.

  2. eLife assessment

    The authors report that optogenetic inhibition of hippocampal axon terminals in retrosplenial cortex impairs the performance of a delayed non-match to place task. The significance of findings elucidating the role of hippocampal projections to the retrosplenial cortex in memory and decision-making behaviors is important. However, the strength of evidence for the paper's claims is currently incomplete.

  3. Reviewer #1 (Public Review):

    Summary:

    This is a study on the role of the retrosplenial cortex (RSC) and the hippocampus in working memory. Working memory is a critical cognitive function that allows temporary retention of information for task execution. The RSC, which is functionally and anatomically connected to both primary sensory (especially visual) and higher cognitive areas, plays a key role in integrating spatial-temporal context and in goal-directed behaviors. However, the specific contributions of the RSC and the hippocampus in working memory-guided behaviors are not fully understood due to a lack of studies that experimentally disrupt the connection between these two regions during such behaviors.

    In this study, researchers employed eArch3.0 to silence hippocampal axon terminals in the RSC, aiming to explore the roles of these brain regions in working memory. Experiments were conducted where animals with silenced hippocampal axon terminals in the RSC performed a delayed non-match to place (DNMP) task. The results indicated that this manipulation impaired memory retrieval, leading to decreased performance and quicker decision-making in the animals. Notably, the authors observed that the effects of this impairment persisted beyond the light-activation period of the opsin, affecting up to three subsequent trials. They suggest that disrupting the hippocampal-RSC connection has a significant and lasting impact on working memory performance.

    Strengths:

    They conducted a study exploring the impact of direct hippocampal inputs into the RSC, a region involved in encoding spatial-temporal context and transferring contextual information, on spatial working memory tasks. Utilizing eArch3.0 expressed in hippocampal neurons via the viral vector AAV5-hSyn1-eArch3.0, they aimed to bilaterally silence hippocampal terminals located at the RSC in rats pre-trained in a DNMP task. They discovered that silencing hippocampal terminals in the RSC significantly decreased working memory performance in eArch+ animals, especially during task interleaving sessions (TI) that alternated between trials with and without light delivery. This effect persisted even in non-illuminated trials, indicating a lasting impact beyond the periods of direct manipulation. Additionally, they observed a decreased likelihood of correct responses following TI trials and an increased error rate in eArch+ animals, even after incorrect responses, suggesting an impairment in error-corrective behavior. This contrasted with baseline sessions where no light was delivered, and both eArch+ and control animals showed low error rates.

    Weaknesses:

    While I agree with the authors that the role of hippocampal inputs to the RSC in spatial working memory is understudied and merits further investigation, I find that the optogenetic experiment, a core part of this manuscript that includes viral injections, could be improved. The effects were rather subtle, rendering some of the results barely significant and possibly too weak to support major conclusions. Additionally, no mechanistic investigation was conducted beyond referencing previous reports to interpret the core behavioral phenotypes.

  4. Reviewer #2 (Public Review):

    The authors examine the impact of optogenetic inhibition of hippocampal axon terminals in the retrosplenial cortex (RSP) during the performance of a working memory T-maze task. Performance on a delayed non-match-to-place task was impaired by such inhibition. The authors also report that inhibition is associated with faster decision-making and that the effects of inhibition can be observed over several subsequent trials. The work seems reasonably well done and the role of hippocampal projections to retrosplenial cortex in memory and decision-making is very relevant to multiple fields. However, the work should be expanded in several ways before one can make firm conclusions on the role of this projection in memory and behavior.

    (1) The work is very singular in its message and the experimentation. Further, the impact of the inhibition on behavior is very moderate. In this sense, the results do not support the conclusion that the hippocampal projection to retrosplenial cortex is key to working memory in a navigational setting.

    (2) There are no experiments examining other types of behavior or working memory. Given that the animals used in the studies could be put through a large number of different tasks, this is surprising. There is no control navigational task. There is no working memory test that is non-spatial. Such results should be presented in order to put the main finding in context.

    (3) The actual impact of the inhibition on activity in RSP is not provided. While this may not be strictly necessary, it is relevant that the hippocampal projection to RSP includes, and is perhaps dominated by inhibitory inputs. I wonder why the authors chose to manipulate hippocampal inputs to RSP when the subiculum stands as a much stronger source of afferents to RSP and has been shown to exhibit spatial and directional tuning of activity. The points here are that we cannot be sure what the manipulation is really accomplishing in terms of inhibiting RSP activity (perhaps this explains the moderate impact on behavior) and that the effect of inhibiting hippocampal inputs is not an effective means by which to study how RSP is responsive to inputs that reflect environmental locations.

    (4) The impact of inhibition on trials subsequent to the trial during which optical stimulation was actually supplied seems trivial. The authors themselves point to evidence that activation of the hyperpolarizing proton pump is rather long-lasting in its action. Further, each sample-test trial pairing is independent of the prior or subsequent trials. This finding is presented as a major finding of the work, but would normally be relegated to supplemental data as an expected outcome given the dynamics of the pump when activated.

    (5) In the middle of the first paragraph of the discussion, the authors make reference to work showing RSP responses to "contextual information in egocentric and allocentric reference frames". The citations here are clearly deficient. How is the Nitzan 2020 paper at all relevant here?

    (6) The manuscript is deficient in referencing and discussing data from the Smith laboratory that is similar. The discussion reads mainly like a repeat of the results section.