Base editing strategies to convert CAG to CAA diminish the disease-causing mutation in Huntington's disease

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This proof-of-concept study focuses on an A->G DNA base editing strategy that converts CAG repeats to CAA repeats in the human HTT gene, which causes Huntington's disease (HD). These studies are conducted in human HEK293 cells engineered with a 51 CAG canonical repeat and in HD knock-in mice harboring 105+ CAG repeats. The findings of this study are valuable for the HD field, applying state-of-the-art techniques. However, the key experiments have yet to be performed in neuronal systems or brains of these mice: actual disease-rectifying effects relevant to patients have yet to observed, so the evidence is incomplete.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

An expanded CAG repeat in the huntingtin gene ( HTT ) causes Huntington’s disease (HD). Since the length of uninterrupted CAG repeat, not polyglutamine, determines the age-at-onset in HD, base editing strategies to convert CAG to CAA are anticipated to delay onset by shortening the uninterrupted CAG repeat. Here, we developed base editing strategies to convert CAG in the repeat to CAA and determined their molecular outcomes and effects on relevant disease phenotypes. Base editing strategies employing combinations of cytosine base editors and gRNAs efficiently converted CAG to CAA at various sites in the CAG repeat without generating significant indels, off-target edits, or transcriptome alterations, demonstrating their feasibility and specificity. Candidate BE strategies converted CAG to CAA on both expanded and non-expanded CAG repeats without altering HTT mRNA and protein levels. In addition, somatic CAG repeat expansion, which is the major disease driver in HD, was significantly decreased by a candidate BE strategy treatment in HD knock-in mice carrying canonical CAG repeats. Notably, CAG repeat expansion was abolished entirely in HD knock-in mice carrying CAA-interrupted repeats, supporting the therapeutic potential of CAG-to-CAA conversion base editing strategies in HD and potentially other repeat expansion disorders.

Article activity feed

  1. eLife assessment

    This proof-of-concept study focuses on an A->G DNA base editing strategy that converts CAG repeats to CAA repeats in the human HTT gene, which causes Huntington's disease (HD). These studies are conducted in human HEK293 cells engineered with a 51 CAG canonical repeat and in HD knock-in mice harboring 105+ CAG repeats. The findings of this study are valuable for the HD field, applying state-of-the-art techniques. However, the key experiments have yet to be performed in neuronal systems or brains of these mice: actual disease-rectifying effects relevant to patients have yet to observed, so the evidence is incomplete.

  2. Reviewer #1 (Public Review):

    Summary:
    In the paper by Choi et al., the authors aimed to develop base editing strategies to convert CAG repeats to CAA repeats in the huntingtin gene (HTT), which causes Huntington's disease (HD). They hypothesized that this conversion would delay disease onset by shortening the uninterrupted CAG repeat. Using HEK-293T cells as a model, the researchers employed cytosine base editors and guide RNAs (gRNAs) to efficiently convert CAG to CAA at various sites within the CAG repeat. No significant indels, off-target edits, transcriptome alterations, or changes in HTT protein levels were detected. Interestingly, somatic CAG repeat expansion was completely abolished in HD knock-in mice carrying CAA-interrupted repeats.

    Strengths:
    This study represents the first proof-of-concept exploration of the cytosine base editing technique as a potential treatment for HD and other repeat expansion disorders with similar mechanisms.

    Weaknesses:
    Given that HD is a neurodegenerative disorder, it is crucial to determine the efficiency of the base editing strategies tested in this manuscript and their feasibility in relevant cells affected by HD and the brain, which needed to be improved in this manuscript.

  3. Reviewer #2 (Public Review):

    Summary:
    In a proof-of-concept study with the aspiration of developing a treatment to delay HD onset, Choi et al. design and test an A>G DNA base editing strategy to exploit the recently established inverse relationship between the number of uninterrupted CAG repeats in polyglutamine repeat expansions and the age-of-onset of Huntington's Disease (HD). Most of the study is devoted to optimizing a base editing strategy typified by BE4max and gRNA2. The base editing is performed in human HEK293 cells engineered with a 51 CAG canonical repeat and in HD knock-in mice harboring 105+ CAG repeats.

    Weaknesses:
    Genotypic data on DNA editing are not portrayed in a clear manner consistent with the study's goal, namely reducing the number of uninterrupted CAG repeats by a clinically relevant amount according to the authors' least square approximated mean age-at-onset. No phenotypic data are presented to show that editing performed in either model would lead to reduced hallmarks of HD onset.

    More evidence is needed to support the central claims and therapeutic potential needs to be more adequate.

  4. Reviewer #3 (Public Review):

    Summary:
    In human patients with Huntington's disease (HD), caused by a CAG repeat expansion mutation, the number of uninterrupted CAG repeats at the genomic level influences age-at-onset of clinical signs independent of the number of polyglutamine repeats at the protein level. In most patients, the CAG repeat terminates with a CAA-CAG doublet. However, CAG repeat variants exist that either do not have that doublet or have two doublets. These variants consequently differ in their number of uninterrupted CAG repeats, while the number of glutamine repeats is the same as both CAA and CAG codes for glutamine. The authors first confirm that a shorter uninterrupted CAG repeat number in human HD patients is associated with developing the first clinical signs of HD later. They predict that introducing a further CAA-CAG doublet will result in years of delay of clinical onset. Based on this observation, the authors tested the hypothesis that turning CAG to CAA within a CAG repeat sequence using base editing techniques will benefit HD biology. They show that, indeed, in HD cell models (HEK293 cells expressing 16/17 CAG repeats; a single human stem cell line carrying a CAG repeat expansion in the fully penetrant range with 42 CAG repeats), their base editing strategies do induce the desired CAG-CAA conversion. The efficiency of conversion differed depending on the strategy used. In stem cells, delivery posed a problem, so to test allele specificity, the authors then used a HEK 293 cell line with 51 CAG repeats on the expanded allele. Conversion occurred in both alleles with huntingtin protein and mRNA levels; transcriptomics data was unchanged. In knock-in mice carrying 110 CAG repeats, however, base editing did not work as well for different, mainly technical, reasons.

    Strengths:
    The authors use state-of-the-art methods and carefully and thoroughly designed experiments. The data support the conclusions drawn. This work is a very valuable translation from the insight gained from large GWAS studies into HD pathogenesis. It rightly emphasises the potential this has as a causal treatment in HD, while the authors also acknowledge important limitations.

    Weaknesses:
    They could dedicate a little more to discussing several of the mentioned challenges. The reader will better understand where base editing is in HD currently and what needs to be done before it can be considered a treatment option. For instance,

    -It is important to clarify what can be gained by examining again the relationship between uninterrupted CAG repeat length and age-at-onset. Could the authors clarify why they do this and what it adds to their already published GWAS findings? What is the n of datasets?
    -What do they think an ideal conversion rate would be, and how that could be achieved?
    -Is there a dose-effect relationship for base editing, and would it be realistic to achieve the ideal conversion rate in target cells, given the difficulties described by the authors in differentiated neurons from stem cells?
    - The liver is a good tool for in-vivo experiments examining repeat instability in mouse models. However, the authors could comment on why they did not examine the brain.
    - Is there a limit to judging the effects of base editing on somatic instability with longer repeats, given the difficulties in measuring long CAG repeat expansions?
    - Given the methodological challenges for assessing HTT fragments, are there other ways to measure the downstream effects of base editing rather than extrapolate what it will likely be?
    - Sequencing errors could mask low-level, but biologically still relevant, off-target effects (such as gRNA-dependent and gRNA-independent DNA, Off-targets, RNA off-targets, bystander editing). How likely is that?
    - How worried are the authors about immune responses following base editing? How could this be assessed?