Corticotropin Releasing Factor in the Bed Nucleus of the Stria Terminalis modulates the behavioral consequences of unpredictable threat

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This study presents useful findings regarding how a particular class of neurons within a brain region respond to threatening stimuli and their role in fear processing in male and female mice; these results are solid as they uncover the role functional of this brain region (BNST) in this particular type of processing and expand this knowledge by highlighting the function of a specific class of neurons (CRF) showing that their role in fear depends on the sex of the animal. However, the analysis is incomplete and can certainly benefit from additional (for example locomotor) controls and from clarifying interpretability issues with respect to sex differences in fear expression and to a precise role of these neurons. The work will be of interest to neuroscientists studying the biological basis of fear processing.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Fear is a protective response to perceived danger that allows an organism to identify and respond to threats to avoid harm. Though fear is critical for survival, excessive fear can impede normal biological processes; thus, accurate risk assessment is key for well-being. Here we investigate the neural underpinnings of two distinct behavioral states: phasic and sustained fear. Phasic fear is considered an adaptive response and is characterized by response to a clear and discrete cue that dissipates rapidly once the threat is no longer present. Conversely, sustained fear or anxiety is a heightened state of arousal and apprehension that is not clearly associated with specific cues and lasts for longer periods of time. Here, we directly examine the contribution of BNST CRF signaling to phasic and sustained fear in male and female mice using a partially reinforced fear paradigm to test the overarching hypothesis that plasticity in BNST CRF neurons drive distinct behavioral responses to unpredictable threat in males and females.

Article activity feed

  1. eLife assessment

    This study presents useful findings regarding how a particular class of neurons within a brain region respond to threatening stimuli and their role in fear processing in male and female mice; these results are solid as they uncover the role functional of this brain region (BNST) in this particular type of processing and expand this knowledge by highlighting the function of a specific class of neurons (CRF) showing that their role in fear depends on the sex of the animal. However, the analysis is incomplete and can certainly benefit from additional (for example locomotor) controls and from clarifying interpretability issues with respect to sex differences in fear expression and to a precise role of these neurons. The work will be of interest to neuroscientists studying the biological basis of fear processing.

  2. Reviewer #1 (Public Review):

    The aim of this study is to test the overarching hypothesis that plasticity in BNST CRF neurons drives distinct behavioral responses to unpredictable threat in males and females. The manuscript provides evidence for a possible sex-specific role for CRF-expressing neurons in the BNST in unpredictable aversive conditioning and subsequent hypervigilance across sexes. As the authors note, this is an important question given the high prevalence of sex differences in stress-related disorders, like PTSD, and the role of hypervigilance and avoidance behaviors in these conditions. The study includes in vivo manipulation, bulk calcium imaging, and cellular resolution calcium imaging, which yield important insights into cell-type specific activity patterns. However, it is difficult to generate an overall conclusion from this manuscript, given that many of the results are inconsistent across sexes and across tests and there is an overall lack of converging evidence. For example, partial conditioning yields increased startle in males but not females, yet, CRF KO only increases startle response in males after full conditioning, not partial, and CRF neurons show similar activity patterns between partial and full conditioning across sexes. Further, while the study includes a KO of CRF, it does not directly address the stated aim of assessing whether plasticity in CRF neurons drives the subsequent behavioral
    effects unpredictable threat.

    A major strength of this manuscript is the inclusion of both males and females and attention to possible behavioral and neurobiological differences between them throughout. However, to properly assess sex-differences, sex should be included as a factor in ANOVA (e.g. for freezing, startle, and feeding data in Figure 1) to assess whether there is a significant main effect or interaction with sex. If sex is not a statistically significant factor, both sexes should be combined for subsequent analyses. See, Garcia-Sifuentes and Maney, eLife 2021 https://elifesciences.org/articles/70817. There are additional cases where t-tests are used to compare groups when repeated measures ANOVAs would be more appropriate and rigorous.

    Additionally, it's unclear whether the two sexes are equally responsive to the shock during conditioning and if this is underlying some of the differences in behavioral and neuronal effects observed. There are some reports that suggest shock sensitivity differs across sexes in rodents, and thus, using a standard shock intensity for both males and females may be confounding effects in this study.

    The data does not rule out that BNST CRF activity is not purely tracking the mobility state of the animal, given that the differences in activity also track with differences in freezing behavior. The data shows an inverse relationship between activity and freezing. This may explain a paradox in the data which is why males show a greater suppression of BNST activity after partial conditioning than full conditioning, if that activity is suspected to drive the increased anxiety-like response. Perhaps it reflects that activity is significantly suppressed at the end of the conditioning session because animals are likely to be continuously freezing after repeated shock presentations in that context. It would also explain why there is less of a suppression in activity over the course of the recall session, because there is less freezing as well during recall compared with conditioning.

    A mechanistic hypothesis linking BNST CRF neurons, the behavioral effects observed after fear conditioning, and manipulation of CRF itself are not clearly addressed here.

  3. Reviewer #2 (Public Review):

    This study examined the role of CRF neurons in the BNST in both phasic and sustained fear in males and females. The authors first established a differential fear paradigm whereby shocks were consistently paired with tones (Full) or only paired with tones 50% of the time (Part), or controls who were exposed to only tones with no shocks. Recall tests established that both Full and Part conditioned male and female mice froze to the tones, with no difference between the paradigms. Additional studies using the NSF and startle test, established that neither fear paradigm produced behavioral changes in the NSF test, suggesting that these fear paradigms do not result in an increase in anxiety-like behavior. Part fear conditioning, but not Full, did enhance startle responses in males but not females, suggesting that this fear paradigm did produce sustained increases in hypervigilance in males exclusively. Photometry studies found that while undifferentiated BNST neurons all responded to shock itself, only Full conditioning in males lead to a progressive enhancement of the magnitude of this response. BNST neurons in males, but not females, were also responsive to tone onset in both fear paradigms, but only in Full fear did the magnitude of this response increase across training. Knockdown of CRF from the BNST had no effect on fear learning in males or females, nor any effect in males on fear recall in either paradigm, but in females enhanced both baseline and tone-induced freezing only in Part fear group. When looking at anxiety following fear training, it was found in males that CRF knockdown modulated anxiety in Part fear trained animals and amplified startle in Fully trained males but had no effect in either test in females. Using 1P imaging, it was found that CRF neurons in the BNST generally decline in activity across both conditioning and recall trials, with some subtle sex differences emerging in the Part fear trained animals in that in females BNST CRF neurons were inhibited after both shock and omission trials but in males this only occurred after shock and not omission trials. In recall trials, CRF BNST neuron activity remained higher in Part conditioned mice relative to Full conditioned mice.

    Overall, this is a very detailed and complex study that incorporates both differing fear training paradigms and males and females, as well as a suite of both state of the art imaging techniques and gene knockdown approaches to isolate the role and contributions of CRF neurons in the BNST to these behavioral phenomena. The strengths of this study come from the thorough approach that the authors have taken, which in turn helped to elucidate nuanced and sex specific roles of these neurons in the BNST to differing aspects of phasic and sustained fear. More so, the methods employed provide a strong degree of cellular resolution for CRF neurons in the BNST. In general, the conclusions appropriately follow the data, although the authors do tend to minimize some of the inconsistencies across studies (discussed in more depth below), which could be better addressed through discussion of these in greater depth. As such, the primary weakness of this manuscript comes largely from the discussion and interpretation of mixed findings without a level of detail and nuance that reflects the complexity, and somewhat inconsistency, across the studies. These points are detailed below:

    -Given the focus on CRF neurons in the BNST, it is unclear why the photometry studies were performed in undifferentiated BNST neurons as opposed to CRF neurons specifically (although this is addressed, to some degree, subsequently with the 1P studies in CRF neurons directly). This does limit the continuity of the data from the photometry studies to the subsequent knockdown and 1P imaging studies. The authors should address the rationale for this approach so it is clear why they have moved from broader to more refined approaches.

    -The CRF KD studies are interesting, but it remains speculative as to whether these effects are mediated locally in the BNST or due to CRF signaling at downstream targets. As the literature on local pharmacological manipulation of CRF signaling within the BNST seems to be largely performed in males, the addition of pharmacological studies here would benefit this to help to resolve if these changes are indeed mediated by local impairments in CRF release within the BNST or not. While it is not essential to add these experiments, the manuscript would benefit from a more clear description of what pharmacological studies could be performed to resolve this issue.

    -While I can appreciate the authors perspective, I think it is more appropriate to state that startle correlates with anxiety as opposed to outright stating that startle IS anxiety. Anxiety by definition is a behavioral cluster involving many outputs, of which avoidance behavior is key. Startle, like autonomic activation, correlates with anxiety but is not the same thing as a behavioral state of anxiety (particularly when the startle response dissociates from behavior in the NSF test, which more directly tests avoidance and apprehension). Throughout the manuscript the use of anxiety or vigilance to describe startle becomes interchangeable, but then the authors also dissociate these two, such as in the first paragraph of the discussion when stating that the Part fear paradigm produces hypervigilance in males without influencing fear or anxiety-like behaviors. The manuscript would benefit from harmonization of the language used to operationally define these behaviors and my recommendation would be to remain consistent with the description that startle represents hypervigilance and not anxiety, per se.

    -The interpretation of the anxiety data following CRF KD is somewhat confusing. First, while the authors found no effect of fear training on behavior in the NSF test in the initial studies, now they do, however somewhat contradictory to what one would expect they found that Full fear trained males had reduced latency to feed (indicative of an anxiolytic response), which was unaltered by CRF KD, but in Part fear (which appeared to have no effect on its own in the NSF test), KD of CRF in these animals produced an anxiolytic effect. Given that the Part fear group was no different from control here it is difficult to interpret these data as now CRF KD does reduce latency to feed in this group, suggesting that removal of CRF now somehow conveys an anxiolytic response for Part fear animals. In the discussion the authors refer to this outcome as CRF KD "normalizing" the behavior in the NSF test of Part fear conditioned animals as now it parallels what is seen after Full fear, but given that the Part fear animals with GFP were no different then controls (and neither of these fear training paradigms produced any effect in the NSF test in the first arm of studies), it seems inappropriate to refer to this as "normalization" as it is unclear how this is now normalized. Given the complexity of these behavioral data, some greater depth in the discussion is required to put these data in context and describe the nuance of these outcomes, in particular a discussion of possible experimental factors between the initial behavioral studies and those in the CRF KD arm that could explain the discrepancy in the NSF test would be good (such as the inclusion of surgery, or other factors that may have differed between these experiments). These behavioral outcomes are even more complex given that the opposite effect was found in startle whereby CRF KD amplified startle in Full trained animals. As such, this portion of the discussion requires some reworking to more adequately address the complexity of these behavioral findings.

  4. Reviewer #3 (Public Review):

    Hon et al. investigated the role of BNST CRF signaling in modulating phasic and sustained fear in male and female mice. They found that partial and full fear conditioning had similar effects in both sexes during conditioning and during recall. However, males in the partially reinforced fear conditioning group showed enhanced acoustic startle, compared to the fully reinforced fear conditioning group, an effect not seen in females. Using fiber photometry to record calcium activity in all BNST neurons, the authors show that the BNST was responsive to foot shock in both sexes and both conditioning groups. Shock response increased over the session in males in the fully conditioned fear group, an effect not observed in the partially conditioned fear group. This effect was not observed in females. Additionally, tone onset resulted in increased BNST activity in both male groups, with the tone response increasing over time in the fully conditioned fear group. This effect was less pronounced in females, with partially conditioned females exhibiting a larger BNST response. During recall in males, BNST activity was suppressed below baseline during tone presentations and was significantly greater in the partially conditioned fear group. Both female groups showed an enhanced BNST response to the tone that slowly decayed over time. Next, they knocked CRF in the BNST to examine its effect on fear conditioning, recall and anxiety-like behavior after fear. They found no effect of the knockdown in either sex or group during fear conditioning. During fear recall, BNST CRF knockdown lead to an increase in freezing in only the partially conditioned females. In the anxiety-like behavior tasks, BNST CRF knockdown lead to increased anxiolysis in the partially reinforced fear male, but not in females. Surprisingly, BNST CRF knockdown increased startle response in fully conditioned, but not partially conditioned males. An effect not observed in either female group. In a final set of experiments, the authors single photon calcium imaging to record BNST CRF cell activity during fear conditioning and recall. Approximately, 1/3 of BNST CRF cells were excited by shock in both sexes, with the rest inhibited and no differences were observed between sexes or group during fear conditioning. During recall, BNST CRF activity decreased in both sexes, an effect pronounced in male and female fully conditioned fear groups.

    Overall, these data provide novel, intriguing evidence in how BNST CRF neurons may encode phasic and sustained fear differentially in males and females. The experiments were rigorous.