Gene regulatory dynamics during craniofacial development in a carnivorous marsupial

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    This important study of regulatory elements and gene expression in the craniofacial region of the fat-tailed dunnart shows that, compared to placental mammals, marsupial craniofacial tissue develops in a precocious manner, with enhancer regulatory elements as primary driver of this difference. While the results are overall solid, addressing concerns regarding the liftover methods in the context of low conservation of alignable enhancers between dunnart and mouse would benefit the work, enhancing its value for uncovering mechanisms that drive heterochronic processes and as a reference for future mammalian evolution studies.

This article has been Reviewed by the following groups

Read the full article

Abstract

Marsupials and placental mammals exhibit significant differences in reproductive and life history strategies. Marsupials are born highly underdeveloped after an extremely short period of gestation, leading to prioritization of the development of structures critical for post-birth survival in the pouch. Critically, they must undergo accelerated development of the oro-facial region compared to placentals. Previously we described the accelerated development of the oro-facial region in the carnivorous Australian marsupial, the fat-tailed dunnart Sminthopsis crassicaudata that has one of the shortest gestations of any mammal. By combining genome comparisons of the mouse and dunnart with functional data for the enhancer-associated chromatin modifications, H3K4me3 and H3K27ac, we investigated divergence of craniofacial regulatory landscapes between these species. This is the first description of genome-wide face regulatory elements in a marsupial, with 60,626 putative enhancers and 12,295 putative promoters described. We also generated craniofacial RNA-seq data for the dunnart to investigate expression dynamics of genes near predicted active regulatory elements. While genes involved in regulating facial development were largely conserved in mouse and dunnart, the regulatory landscape varied significantly. Additionally, a subset of dunnart-specific enhancers were associated with genes highly expressed only in dunnart relating to cranial neural crest proliferation, embryonic myogenesis and epidermis development. Comparative RNA-seq analyses of facial tissue revealed dunnart-specific expression of genes involved in the development of the mechanosensory system. Accelerated development of the dunnart sensory system likely relates to the sensory cues received by the nasal-oral region during the postnatal journey to the pouch. Together these data suggest that accelerated face development in the dunnart may be driven by dunnart-specific enhancer activity. Our study highlights the power of marsupial-placental comparative genomics for understanding the role of enhancers in driving temporal shifts in development.

Article activity feed

  1. eLife Assessment

    This important study of regulatory elements and gene expression in the craniofacial region of the fat-tailed dunnart shows that, compared to placental mammals, marsupial craniofacial tissue develops in a precocious manner, with enhancer regulatory elements as primary driver of this difference. While the results are overall solid, addressing concerns regarding the liftover methods in the context of low conservation of alignable enhancers between dunnart and mouse would benefit the work, enhancing its value for uncovering mechanisms that drive heterochronic processes and as a reference for future mammalian evolution studies.

  2. Reviewer #1 (Public review):

    Summary:

    Cook et al. have presented an important study on the transcriptomic and epigenomic signature underlying craniofacial development in marsupials. Given the lack of a dunnart genome, the authors also prepared long and short-read sequence datasets to assemble and annotate a novel genome to allow for the mapping of RNAseq and ChIPseq data against H3K4me3 and H3K27ac, which allowed for the identification of putative promoter and enhancer sites in dunnart. They found that genes proximal to these regulatory loci were enriched for functions related to bone, skin, muscle and embryonic development, highlighting the precocious state of newborn dunnart facial tissue. When compared with mouse, the authors found a much higher proportion of promoter regions aligned between species than for enhancer regions, and subsequent profiling identified regulatory elements conserved across species and are important for mammalian craniofacial development. In contrast, the identification of dunnart-specific enhancers and patterns of RNA expression further confirm the precocious state of muscle development, as well as for sensory system development, in dunnart suggesting that early formation of these features are critical for neonate marsupials likely to assist with detecting and responding to cues that direct the joeys to the mother's teat after birth. This is one of the few epigenomic studies performed in marsupials (of any organ) and the first performed in fat-tailed dunnart (also of any organ). Marsupials are emerging as an important model for studying mammalian development and evolution and the authors have performed a novel and thorough analysis, impressively including the assembly of a new marsupial reference genome that will benefit many future studies.

    Strengths:

    The study provides multiple pieces of evidence supporting the important role enhancer elements play in mammalian phenotypic evolution, namely the finding of a lower proportion of peaks present in both dunnart and mouse for enhancers than for promoters, and dunnart showing more genes uniquely associated with it's active enhancers than any other combination of mouse and dunnart samples, whereas this pattern was less pronounced than for promoter-associated genes. In addition, rigorous parameters were used for the cross-species analyses to identify the conserved regulatory elements and the dunnart-specific enhancers. For example, for the results presented in Figure 1, I agree that it is a little surprising that the average promoter-TSS distance is greater than that for enhancers, but that this could be related to the possible presence of unannotated transcripts between genes. The authors addressed this well by examining the distribution of promoter-TSS distances and using proximal promoters (cluster #1) as high confidence promoters for downstream analyses.

    The genome assembly method was thorough, using two different long read methods (Pacbio and ONT) to generate the long reads for contig and scaffold construction, increasing the quality of the final assembled genome.

    Weaknesses:

    Biological replicates of facial tissue were collected at a single developmental time point of the fat-tailed dunnart within the first postnatal day (P0), and analysed this in the context of similar mouse facial samples from the ENCODE consortium at six developmental time points, where previous work from the authors have shown that the younger mouse samples (E11.5-12.5) approximately corresponds to the dunnart developmental stage (Cook et al. 2021). However, it would be useful to have samples from at least one older dunnart time point, for example, at a developmental stage equivalent to mouse E15.5. This would provide additional insight into the extent of accelerated face development in dunnart relative to mouse, i.e. how long do the regulatory elements that activated early in dunnart remain active for and does their function later influence other aspects of craniofacial development?

    The authors refer to the development of the CNS being delayed in marsupials relative to placental mammals, however, evidence shows how development of the dunnart brain (whole brain or cortex) is protracted compared to mouse, by a factor of at least 2 times, rather than delayed per se (Workman et al. 2013; Paolino et al. 2023). In addition, there is evidence that cortical formation and cell birth may begin at approximately the same stage across species equivalent to the neonate period in dunnart (E10.5 in mouse), and that shortly after this at the stage equivalent to mouse E12.5, the dunnart cortex shows signs of advanced neurogenesis followed by a protracted phase of neuronal maturation (Paolino et al. 2023). Therefore, it is possible that marsupial CNS development appears delayed relative to mouse but instead begins at the same stage and then proceeds to develop on a different timing scale.

  3. Reviewer #2 (Public review):

    This study by Cook and colleagues utilizes genomic techniques to examine gene regulation in the craniofacial region of the fat-tailed dunnart at perinatal stages. Their goal is to understand how accelerated craniofacial development is achieved in marsupials compared to placental mammals.

    The authors employ state-of-the-art genomic techniques, including ChIP-seq, transcriptomics, and high-quality genome assembly, to explore how accelerated craniofacial development is achieved in marsupials compared to placental mammals. This work addresses an important biological question and contributes a valuable dataset to the field of comparative developmental biology. The study represents a commendable effort to expand our understanding of marsupial development, a group often underrepresented in genomic studies.

    The dunnart's unique biology, characterized by a short gestation and rapid craniofacial development, provides a powerful model for examining developmental timing and gene regulation. The authors successfully identified putative regulatory elements in dunnart facial tissue and linked them to genes involved in key developmental processes such as muscle, skin, bone, and blood formation. Comparative analyses between dunnart and mouse chromatin landscapes suggest intriguing differences in deployment of regulatory elements and gene expression patterns.

    Strengths

    (1) The authors employ a broad range of cutting-edge genomic tools to tackle a challenging model organism. The data generated - particularly ChIP-seq and RNA-seq from craniofacial tissue - are a valuable resource for the community, which can be employed for comparative studies. The use of multiple histone marks in the ChIP-seq experiments also adds to the utility of the datasets.

    (2) Marsupial occupy an important phylogenetic position, but they remain an understudied group. By focusing on the dunnart, this study addresses a significant gap in our understanding of mammalian development and evolution. Obtaining enough biological specimens for these experiments studies was likely a big challenge that the authors were able to overcome.

    (3) The comparison of enhancer landscapes and transcriptomes between dunnarts and can serve as the basis of subsequent studies that will examine the mechanisms of developmental timing shifts. The authors also carried out liftover analyses to identify orthologous enhancers and promoters in mice and dunnart.

    Weaknesses and Recommendations

    (1) The absence of genome browser tracks for ChIP-seq data makes it difficult to assess the quality of the datasets, including peak resolution and signal-to-noise ratios. Including browser tracks would significantly strengthen the paper by provide further support for adequate data quality.

    (2) The first two figures of the paper heavily rely in gene orthology analysis, motif enrichment, etc, to describe the genomic data generated from the dunnart. The main point of these figures is to demonstrate that the authors are capturing the epigenetic signature of the craniofacial region, but this is not clearly supported in the results. The manuscript should directly state what these analyses aim to accomplish - and provide statistical tests that strengthen confidence on the quality of the datasets.

    (3) The observation that "promoters are located on average 106 kb from the nearest TSS" raises significant concerns about the quality of the ChIP-seq data and/or genome annotation. The results and supplemental information suggest a combination of factors, including unannotated transcripts and enhancer-associated H3K4me3 peaks - but this issue is not fully resolved in the manuscript. The authors should confirm that this is not caused by spurious peaks in the CHIP-seq analysis - and possibly improve genome annotation with the transcriptomic datasets presented on the study.

    (4) The comparison of gene regulation between a single dunnart stage (P1) and multiple mouse stages lacks proper benchmarking. Morphological and gene expression comparisons should be integrated to identify equivalent developmental stages. This "alignment" is essential for interpreting observed differences as true heterochrony rather than intrinsic regulatory differences.

    (5) The low conservation of putative enhancers between mouse and dunnart (0.74-6.77%) is surprising given previous reports of higher tissue-specific enhancer conservation across mammals. The authors should address whether this low conservation reflects genuine biological divergence or methodological artifacts (e.g., peak-calling parameters or genome quality). Comparisons with published studies could contextualize these findings.

    (6) Focusing only on genes associated with shared enhancers excludes potentially relevant genes without clear regulatory conservation. A broader analysis incorporating all orthologous genes may reveal additional insights into craniofacial heterochrony.

    In conclusion, this study provides an important dataset for understanding marsupial craniofacial development and highlights the potential of genomic approaches in non-traditional model organisms. However, methodological limitations, including incomplete genome annotation and lack of developmental benchmarking weaken the robustness and of the findings. Addressing these issues would significantly enhance the study's utility to the field and its ability to support the study's central conclusion that dunnart-specific enhancers drive accelerated craniofacial development.