Multi-centre analysis of networks and genes modulated by hypothalamic stimulation in patients with aggressive behaviours

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This study presents useful structural and functional connectivity profiles of patients receiving deep brain stimulation in the posterior hypothalamus for severe and refractory aggressive behavior. The inclusion of data from multiple centers is compelling. However, the imaging analysis is incomplete and the interpretation of the findings is not solid.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Deep brain stimulation targeting the posterior hypothalamus (pHyp-DBS) is being investigated as a treatment for refractory aggressive behavior, but its mechanisms of action remain elusive. We conducted an integrated imaging analysis of a large multi-centre dataset, incorporating volume of activated tissue modeling, probabilistic mapping, normative connectomics, and atlas-derived transcriptomics. Ninety-one percent of the patients responded positively to treatment, with a more striking improvement recorded in the pediatric population. Probabilistic mapping revealed an optimized surgical target within the posterior-inferior-lateral region of the posterior hypothalamic area. Normative connectomic analyses identified fiber tracts and functionally connected with brain areas associated with sensorimotor function, emotional regulation, and monoamine production. Functional connectivity between the target, periaqueductal gray and key limbic areas – together with patient age – were highly predictive of treatment outcome. Transcriptomic analysis showed that genes involved in mechanisms of aggressive behavior, neuronal communication, plasticity and neuroinflammation might underlie this functional network.

Article activity feed

  1. Author Response

    Reviewer #1 (Public Review):

    The authors have compiled and analysed a unique dataset of patients with treatment-resistant aggressive behaviours who received deep brain stimulation (DBS) of the posterior hypothalamic region. They used established analysis pipelines to identify local predictors of clinical outcomes and performed normative structural and functional connectivity analyses to derive networks associated with treatment response. Finally, Gouveia et al. perform spatial transcriptomics to determine the molecular substrates subserving the identified circuits. The inclusion of data from multiple centres is a notable strength of this retrospective study, but there are current limitations in the methodology and interpretation of findings that need to be addressed.

    1. The validation of findings is heterogeneous and …
  2. eLife assessment

    This study presents useful structural and functional connectivity profiles of patients receiving deep brain stimulation in the posterior hypothalamus for severe and refractory aggressive behavior. The inclusion of data from multiple centers is compelling. However, the imaging analysis is incomplete and the interpretation of the findings is not solid.

  3. Reviewer #1 (Public Review):

    The authors have compiled and analysed a unique dataset of patients with treatment-resistant aggressive behaviours who received deep brain stimulation (DBS) of the posterior hypothalamic region. They used established analysis pipelines to identify local predictors of clinical outcomes and performed normative structural and functional connectivity analyses to derive networks associated with treatment response. Finally, Gouveia et al. perform spatial transcriptomics to determine the molecular substrates subserving the identified circuits. The inclusion of data from multiple centres is a notable strength of this retrospective study, but there are current limitations in the methodology and interpretation of findings that need to be addressed.

    1. The validation of findings is heterogeneous and inconsistent across …

  4. Reviewer #2 (Public Review):

    Deep brain stimulation (DBS) is an important, relatively new approach for treating refractory psychiatric illnesses including depression, addiction, and obsessive-compulsive disorder. This study examines the structural and functional connections associated with symptom improvement following DBS in the posterior hypothalamus (pHyp-DBS) for severe and refractory aggressive behavior. Behavioral assessments, outcome data, electrode placements, and structural and functional (resting-state) imaging data were collected from 33 patients from 5 sites. The results show structural connections of the effective electrodes (91% of patients responded positively) were with sensorimotor regions, emotional regulation areas, and monoamine pathways. Functional connectivity between the target, periaqueductal gray, and amygdala …