TPL2 kinase activity regulates microglial inflammatory responses and promotes neurodegeneration in tauopathy mice

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    In this study, the authors provide important findings supporting a key role for TLP2 as a regulator of neurotoxic and pro-inflammatory cytokine and chemokine release following acute and chronic neuroinflammation. They provide convincing data supporting that the abrogation of TPL2 kinase activity ameliorates disease pathogenesis in a mouse model of tauopathy. This manuscript will be of broad interest to readers in the fields of neuroimmunology and neurodegenerative disease who are interested in the pathogenic effects of innate immune signaling pathways in disease.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Tumor progression locus 2 (TPL2) (MAP3K8) is a central signaling node in the inflammatory response of peripheral immune cells. We find that TPL2 kinase activity modulates microglial cytokine release and is required for microglia-mediated neuron death in vitro. In acute in vivo neuroinflammation settings, TPL2 kinase activity regulates microglia activation states and brain cytokine levels. In a tauopathy model of chronic neurodegeneration, loss of TPL2 kinase activity reduces neuroinflammation and rescues synapse loss, brain volume loss, and behavioral deficits. Single-cell RNA sequencing analysis indicates that protection in the tauopathy model was associated with reductions in activated microglia subpopulations as well as infiltrating peripheral immune cells. Overall, using various models, we find that TPL2 kinase activity can promote multiple harmful consequences of microglial activation in the brain including cytokine release, iNOS (inducible nitric oxide synthase) induction, astrocyte activation, and immune cell infiltration. Consequently, inhibiting TPL2 kinase activity could represent a potential therapeutic strategy in neurodegenerative conditions.

Article activity feed

  1. Author Response

    Reviewer #1 (Public Review):

    Wang, Y. et al. investigated the role of TPL2 signaling in acute and chronic neuroinflammatory conditions using small molecule inhibitors and a TPL2 kinase-dead mutant mouse line. They find that TPL2 is upregulated by various brain-resident cells, including microglia, astrocytes, and endothelial cells, during neurodegenerative disease progression and following peripheral LPS injection. They show that upon pharmacological and genetic inhibition during acute LPS stimulation, pro-inflammatory cytokine concentration, microgliosis, and neuronal loss can be reversed. In chronic neuroinflammation, as seen in a tauopathy mouse model, the loss of TPL2 rescues reactive gliosis, immune cell infiltration, neurodegeneration, and cognitive health. Interestingly, TPL2 loss of function was not …

  2. eLife assessment

    In this study, the authors provide important findings supporting a key role for TLP2 as a regulator of neurotoxic and pro-inflammatory cytokine and chemokine release following acute and chronic neuroinflammation. They provide convincing data supporting that the abrogation of TPL2 kinase activity ameliorates disease pathogenesis in a mouse model of tauopathy. This manuscript will be of broad interest to readers in the fields of neuroimmunology and neurodegenerative disease who are interested in the pathogenic effects of innate immune signaling pathways in disease.

  3. Reviewer #1 (Public Review):

    Wang, Y. et al. investigated the role of TPL2 signaling in acute and chronic neuroinflammatory conditions using small molecule inhibitors and a TPL2 kinase-dead mutant mouse line. They find that TPL2 is upregulated by various brain-resident cells, including microglia, astrocytes, and endothelial cells, during neurodegenerative disease progression and following peripheral LPS injection. They show that upon pharmacological and genetic inhibition during acute LPS stimulation, pro-inflammatory cytokine concentration, microgliosis, and neuronal loss can be reversed. In chronic neuroinflammation, as seen in a tauopathy mouse model, the loss of TPL2 rescues reactive gliosis, immune cell infiltration, neurodegeneration, and cognitive health. Interestingly, TPL2 loss of function was not significantly beneficial in …

  4. Reviewer #2 (Public Review):

    The authors used both pharmacological inhibition and genetic TPL2 kinase dead (KD) mice to test the hypothesis, that inhibition of TPL2 attenuates the microglia inflammatory response to stimuli such as LPS and in the context of chronic (tau mouse model) and acute (optic nerve crush/stroke) neurodegenerative models. The use of TPL2 kinase dead mice rather than KO mice is elegant and important because of the non-enzymatic role of TPL2 in stabilization of its interacting partner ABIN-2. The authors convincingly demonstrated that pharmacological and genetic inhibition of TLP2 in primary microglia reduced the production of pro-inflammatory cytokines, chemokines, and iNOS and consequently reduced neuronal cell death in neuronal-microglial cocultures. Genetic inhibition of TLP2 reduced partially the inflammatory …