Neurophysiological basis of hemodynamic responses in the developing human brain before the time of normal birth
Curation statements for this article:-
Curated by eLife
eLife assessment
This solid study addresses the functionality of neurovascular coupling in response to somatosensory stimuli in premature neonates based on a compelling methodology combining recordings with fMRI and EEG (microstates approach). While the findings are important for the understanding of the emergence of brain sensory processing, more extended analyses of inter- and intra-subjects' variability are required to support the results interpretation and determine the influence of important factors impacting brain maturation and activity. With the theoretical and analytical parts strengthened, this study will be of interest to developmental neuroscientists and neuroimaging specialists and might have important clinical implications in the field of neonatology.
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (eLife)
Abstract
Neurovascular coupling that links neural activity to localized increases in blood flow is essential both for brain function and to prevent tissue injury. In the healthy human brain, this underlies an association between the duration of EEG microstates, which represent coordinated and metastable activation of neuronal ensembles, and increases in hemodynamic activity. However, in early human life it is not clear whether neurovascular coupling is functional as the underlying physiological mechanisms may be too immature to effectively support it. Here, we combined MRI compatible robotics with simultaneous EEG and fMRI data acquisition in 13 preterm infants to assess whether the relationship between neural activity and hemodynamic responses is present in this critical period of early life. Passive sensorimotor stimulation elicited both a distinct sequence of four EEG microstates and a significant rise in the blood oxygen level dependent (BOLD) fMRI signal in the left primary sensorimotor cortex. Furthermore, EEG microstate duration was significantly related to BOLD response amplitude. These results suggest that effective neurovascular coupling is present in the human brain even before the normal time of birth and reveal a complex relationship between EEG and fMRI signals underpinned by patterns of activity across distinct neural ensembles.
Article activity feed
-
eLife assessment
This solid study addresses the functionality of neurovascular coupling in response to somatosensory stimuli in premature neonates based on a compelling methodology combining recordings with fMRI and EEG (microstates approach). While the findings are important for the understanding of the emergence of brain sensory processing, more extended analyses of inter- and intra-subjects' variability are required to support the results interpretation and determine the influence of important factors impacting brain maturation and activity. With the theoretical and analytical parts strengthened, this study will be of interest to developmental neuroscientists and neuroimaging specialists and might have important clinical implications in the field of neonatology.
-
Reviewer #1 (Public Review):
Using simultaneous EEG-fMRI, authors asked whether neurovascular coupling is already functional in preterm-born neonates, in whom the underlying physiological mechanisms may still be immature at several levels. The question is very interesting and has implications for the study of brain function development as well as early brain injuries. The manuscript reports a correlation between the "mean duration of EEG microstates" and "fMRI BOLD signal-change", through which authors suggest that such a relationship between the EEG activity and BOLD signal highlights the functionality of neurovascular coupling already at the preterm period. The methodology is interesting, but more (not extensive) analysis is required to support the main conclusion and explain the results.
1. The main finding of the study in support of …
Reviewer #1 (Public Review):
Using simultaneous EEG-fMRI, authors asked whether neurovascular coupling is already functional in preterm-born neonates, in whom the underlying physiological mechanisms may still be immature at several levels. The question is very interesting and has implications for the study of brain function development as well as early brain injuries. The manuscript reports a correlation between the "mean duration of EEG microstates" and "fMRI BOLD signal-change", through which authors suggest that such a relationship between the EEG activity and BOLD signal highlights the functionality of neurovascular coupling already at the preterm period. The methodology is interesting, but more (not extensive) analysis is required to support the main conclusion and explain the results.
1. The main finding of the study in support of the conclusion comes from relating the inter-individual variability between EEG microstate duration and fMRI BOLD signal change. Given the few subjects (n=13), small even for neuroimaging in infants, studying effects based on inter-individual variability needs to be done with extra care. It is thus important to check whether interindividual variability can be observed for/accounted for by more basic effects in this population :
- The age range is relatively large (age at scan 31 PMA to 36 PMA - but also the age at birth: 29 to 35 weeks) for the number of included infants. Given the intense age-related changes in brain development at this period, it is important to take this factor into account and study it and to have them perhaps explicitly addressed in the manuscript: a ) Does the duration of EEG microstates depend on the age of the infants? b ) Does the time-to-peak in BOLD decrease with increasing age (Arichi et al., 2012)? c) and eventually does the relation between microstate duration and BOLD signal change holds once controlled for their common dependency on the age (i.e. Once partial correlations are used)?
2. The mean/std for the number of epochs per infant can be detailed more. What was the minimum number of epochs? Did such variability in the number of epochs impact microstate properties such as global explained variance/duration? How variable GEV was across infants and would that relate to the variability in duration?
3. Given that sensory-driven changes in microstates follow a sequential pattern (Hu et al., NeuroImage, 2014), could some "microstate syntax" characterize the underlying brain dynamics during stimulation processing in these neonates? Studying the presence of such syntax could be a way to show structured sensorimotor processing, and to further help quantify the inter-individual variability.
4. Is the sleep state monitored (from the EEG signal itself for example)? Given that the sleep state affects EEG activity and in particular EEG microstate properties in newborns (Khazaei et al., Brain topography, 2021), is there a way to rule out that the variability in microstate duration/BOLD signal change is not due to vigilance states?
5. Some of the conclusions/discussion points could be more cautiously stated and developed. On page 7: "However, our results imply that immature neurovascular coupling may not have a significant role in the pathophysiology of cerebral tissue injuries typically seen in preterm born infants (Volpe, 2009); and even that clinical interventions for perinatal brain injury could account for, accommodate, or capitalize on the presence of neurovascular coupling in the preterm human brain to minimize the severity of the injury and its long-term consequences." With an age range covering very preterm infants to late preterm period, generalizing such a conclusion could be potentially misleading for younger infants for example (fNIRS work in younger preterms does not support neurovascular coupling - Nourhashemi et al, Human brain mapping, 2020). As a group - on average - such a pattern may be reported, but the number of infants at each age does not allow us to draw a conclusion about the developmental stage at which such coupling is truly in place. These points could be more directly discussed with regards to the previous literature.
-
Reviewer #2 (Public Review):
In this work, the authors aim "to assess whether the relationship between neural activity and hemodynamic responses is present" "before the time of normal birth". In other words, they aim at showing that neurovascular coupling is present before term-equivalent gestational age. They use simultaneous EEG and fMRI in preterm infants presented with tactile stimuli.
Neuroimaging methods and stimulation methods are sound and rely on previously published works from the same group using neonatal MRI during somatosensory stimulation. The novelty resides in the use of simultaneous EEG to measure neuronal activity simultaneously with BOLD.
Methodological weaknesses are related to:
- Participant selection and characterization: there is a large variability in gestational age at birth, from very preterm (29 weeks) to late …
Reviewer #2 (Public Review):
In this work, the authors aim "to assess whether the relationship between neural activity and hemodynamic responses is present" "before the time of normal birth". In other words, they aim at showing that neurovascular coupling is present before term-equivalent gestational age. They use simultaneous EEG and fMRI in preterm infants presented with tactile stimuli.
Neuroimaging methods and stimulation methods are sound and rely on previously published works from the same group using neonatal MRI during somatosensory stimulation. The novelty resides in the use of simultaneous EEG to measure neuronal activity simultaneously with BOLD.
Methodological weaknesses are related to:
- Participant selection and characterization: there is a large variability in gestational age at birth, from very preterm (29 weeks) to late preterm (35 weeks) infants, which produces a large variability in chronological age at measurement (2 to 26 days). Considering how physiology and brain structure change dramatically with these factors, such variability seems an important bias. As stated in the introduction "In the time leading up to full-term human birth, rapid maturational changes are taking place across nearly all of the components which both relate to and occur within the neurovascular coupling cascade". There may be an effective neurovascular coupling in a neonate born at 35 weeks and tested at 2 days, and a very atypical or ineffective neurovascular coupling in an infant born at 29 weeks and tested after a month of intensive care, invasive respiratory support, and medication. This bias is also present in EEG analysis since "microstate basis vectors were derived from periods within the grand average signal that were topographically consistent across trials/subjects": any variability due to prematurity/NICU time is lost with this process.
- Not accounting for sleep states. During sleep, preterm infants alternate between slow and agitated sleep states, the pattern of state cycles changing with gestational age. Although the authors used EEG, they do not report looking for sleep states. Sleep state changes during stimulation would likely affect strongly EEG microstates sequence, duration, and power, as well as BOLD amplitude and distribution (ipsi vs. contralateral). This would be easy to verify and would allow a deeper understanding of the data, such as the variability of EEG and BOLD responses in each participant and among participants.
The main issue with the manuscript is the discrepancy between the stated aims ("to assess whether the relationship between neural activity and hemodynamic responses is present") and the literature available on the topic, on one hand, and between the stated aims and the actual work that was performed and discussed in the manuscript, on the other hand.
Aims vs. literature: The presence of a neurovascular coupling before term-equivalent gestational age has already been shown years ago, including by this group. For example, in: Arichi, T., et al. (2010). Somatosensory cortical activation identified by functional MRI in preterm and term infants. NeuroImage, 49(3), 2063-2071, where the following sentence begins the Conclusion "This is the first description of well-localised somatosensory cortical activation in the premature brain using a fully automated and programmable passive motor stimulus. Predominately positive BOLD signal change during stimulation was seen".
Or in:
Arichi, T., et al. (2012). Development of BOLD signal hemodynamic responses in the human brain. NeuroImage, 63, 663-673.
And by other groups using fMRI:
Heep, A., Scheef, L., Jankowski, J., Born, M., Zimmermann, N., Sival, D., et al. (2009). Functional magnetic resonance imaging of the sensorimotor system in preterm infants. Pediatrics, 123(1), 294-300.
Other examples of neurovascular coupling before term can be found with auditory-evoked BOLD responses in fetuses:
Jardri, R., et al. (2008). Fetal cortical activation to sound at 33 weeks of gestation: a functional MRI study. NeuroImage, 42(1), 10-18.
but also, with various types of stimuli using fNIRS, for example:
Mahmoudzadeh, M., et al. (2013). Syllabic discrimination in premature human infants prior to complete formation of cortical layers. Proceedings of the National Academy of Sciences, 110(12), 4846-4851.
And:
Roche-Labarbe, N., et al. (2014). Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates. NeuroImage, 85, 1-8.
Including simultaneous EEG and fNIRS :
Roche-Labarbe, N. et al., 2007. Coupled oxygenation oscillation measured by NIRS and intermittent cerebral activation on EEG in premature infants. NeuroImage, 36(3), pp.718-727.Be it in the Introduction or the Discussion, the authors only consider MRI literature whereas neurovascular coupling has been described and used for cognitive studies in premature neonates using fNIRS. There is no reason to restrict oneself to one technology when discussing fundamental physiological or cognitive processes.
Aims vs. actual work: The work that was actually performed is to measure EEG microstates' duration and power following tactile stimulation and to compare BOLD amplitude with these measures. The question being answered is whether the relationship that exists between microstates duration and BOLD amplitude in adults can also be observed in preterm infants. This in itself is an interesting purpose and should be stated as such in the Abstract and Introduction.
The Introduction is short and lacking in essential information. A review of microstates, what they are and what they mean, and how they are described in premature infants (particularly sensory-evoked microstates), is necessary. Previous studies of neurovascular coupling in preterm infants using evoked potentials, or no EEG at all when measuring the hemodynamic (fMRI or fNIRS) response associated with sensory stimuli. The introduction should argue why microstates would be more meaningful than SEP for EEG-fMRI studies, and what relationship with hemodynamics is expected based on previous studies with older participants. A comprehensive review of neurovascular coupling in preterm neonates, including non-MRI studies, is also necessary. The sentence "Here we test the hypothesis that despite the apparent immaturity of the underlying physiology, neurovascular coupling is functional before the normal time of birth." should be replaced by something along the lines of "Here we test whether the relationship between EEG microstates and neurovascular response is similar in premature infants with adults". Then the experimental contribution will make sense and the Discussion can focus on what it entails for understanding neurovascular coupling that amplitude is related to the duration, not power, of EEG microstates.
A Discussion (distinct from the Results) of the scientific and clinical relevance is currently lacking and it is difficult to assess the significance of the experimental contribution. An interesting discussion of microstates in the preterm brain is presented, but because the topic of microstates' relevance in neonates was not mentioned in the Introduction, it is confusing to read results such as "the observed composite progression of microstates indicates that the preterm brain is already capable of multi-level local sensory elaboration in the primary sensorimotor cortices." that does not correspond to any previously formulated hypothesis.
In the results, the authors should report if microstate duration varies among repeated identical stimuli in each child. The authors may look at this variability in terms of gestational age at birth (for example, in the participants who were born the earliest and have stayed the longest in the NICU, are microstates durations after a stimulus more variable than in the late-preterm participants?). The method for microstate analysis does not give clear information to the reader unfamiliar with Ragu other than the fact that one duration value was calculated for each participant. However, it would be informative to see some sort of dispersion range for both Mean BOLD and microstate duration values. It would be interesting to regress this information with gestational age at birth (or chronological age at scan) and sleep state.
After these changes have been made, I expect that the authors may find a more relevant title for their manuscript. "Neurophysiological basis of hemodynamic responses" does not give a precise idea of the experimental findings. Similarly, the abstract should be adjusted by removing sentences like "These results suggest that effective neurovascular coupling is present in the human brain even before the normal time of birth", a long-known fact, and detailing instead "a complex relationship between EEG and fMRI signals underpinned by patterns of activity across distinct neural ensembles."
Details of the stimulation sequence are unclear:
- Why were stimuli varying in duration from 7.5 to 10.5 seconds? The results report "the median BOLD hemodynamic response peaked at 14 seconds after stimulus onset": was it calculated regardless of stimulus duration? It is unlikely that the peak was reached after the same delay for 7 and 10 s stim. Was this accounted for in the MRI analysis?
- There was a maximum of 24 epochs per participant, but how many epochs were kept for each participant after artifact rejection? How were distributed the 76 epochs remaining for analysis, among the participants? -
Reviewer #3 (Public Review):
This significant EEG-fMRI study highlights the functionality of the neurovascular coupling in response to somatosensory stimuli in the somatosensory cortices of premature neonates. The methods here developed are highly compelling and go beyond the current state of the art. This neurovascular adaptation is described together with an analysis of the relationship between changes in microstate cortical activity and the hemodynamic activities that suppose an already well-organized hierarchical processing of sensory information.
Strengths:
Analyzing simultaneously the changes in microstates (EEG) and BOLD signal (fMRI) in relation to somatosensory stimuli in preterm neonates allowed to demonstrate a correlation between the duration of the microstates and the amplitude of the BOLD response in premature neonates.
Reviewer #3 (Public Review):
This significant EEG-fMRI study highlights the functionality of the neurovascular coupling in response to somatosensory stimuli in the somatosensory cortices of premature neonates. The methods here developed are highly compelling and go beyond the current state of the art. This neurovascular adaptation is described together with an analysis of the relationship between changes in microstate cortical activity and the hemodynamic activities that suppose an already well-organized hierarchical processing of sensory information.
Strengths:
Analyzing simultaneously the changes in microstates (EEG) and BOLD signal (fMRI) in relation to somatosensory stimuli in preterm neonates allowed to demonstrate a correlation between the duration of the microstates and the amplitude of the BOLD response in premature neonates.
The procedure for recording simultaneously EEG and fMRI in preterm neonates is a real challenge that has been very well conducted in terms of methodology.Weaknesses:
Although the paper does have strengths in principle, the weaknesses of the paper are that the authors did not discuss the changes in neurovascular coupling in response to spontaneous bursts of activities or external stimuli in preterm neonates using other modalities such as fetal MEG or simultaneous EEG-fNIRS. While it can be easily understandable that the number of preterm neonates is small, the age range is wide and as discussed by the authors changes in EEG activities are important during the last trimester of gestation.
The sleep stage is not reported but authors might present raw data of the microstates (around 30 secs). In addition, the lack of discussion about the effect of discontinuity which is a characteristic of EEG in premature neonates -